IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5493-d1512930.html
   My bibliography  Save this article

Ultra-Short-Term Wind Power Forecasting in Complex Terrain: A Physics-Based Approach

Author

Listed:
  • Dimitrios Michos

    (Laboratory of Atmospheric Physics, University of Patras, 26500 Patras, Greece)

  • Francky Catthoor

    (Interuniversity Microelectronics Centre (IMEC) vzw, Kapeldreef 75, 3001 Leuven, Belgium
    ESAT-EE, Katholieke Universiteit (K.U.), 3000 Leuven, Belgium)

  • Dimitris Foussekis

    (CRES Wind Farm, 19009 Lavrio, Greece)

  • Andreas Kazantzidis

    (Laboratory of Atmospheric Physics, University of Patras, 26500 Patras, Greece)

Abstract

This paper proposes a method based on Computational Fluid Dynamics (CFD) and the detection of Wind Energy Extraction Latency for a given wind turbine (WT) designed for ultra-short-term (UST) wind energy forecasting over complex terrain. The core of the suggested modeling approach is the Wind Spatial Extrapolation model (WiSpEx). Measured vertical wind profile data are used as the inlet for stationary CFD simulations to reconstruct the wind flow over a wind farm (WF). This wind field reconstruction helps operators obtain the wind speed and available wind energy at the hub height of the installed WTs, enabling the estimation of their energy production. WT power output is calculated by accounting for the average time it takes for the turbine to adjust its power output in response to changes in wind speed. The proposed method is evaluated with data from two WTs (E40-500, NM 750/48). The wind speed dataset used for this study contains ramp events and wind speeds that range in magnitude from 3 m/s to 18 m/s. The results show that the proposed method can achieve a Symmetric Mean Absolute Percentage Error (SMAPE) of 8.44% for E40-500 and 9.26% for NM 750/48, even with significant simplifications, while the SMAPE of the persistence model is above 15.03% for E40-500 and 16.12% for NM 750/48. Each forecast requires less than two minutes of computational time on a low-cost commercial platform. This performance is comparable to state-of-the-art methods and significantly faster than time-dependent simulations. Such simulations necessitate excessive computational resources, making them impractical for online forecasting.

Suggested Citation

  • Dimitrios Michos & Francky Catthoor & Dimitris Foussekis & Andreas Kazantzidis, 2024. "Ultra-Short-Term Wind Power Forecasting in Complex Terrain: A Physics-Based Approach," Energies, MDPI, vol. 17(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5493-:d:1512930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Shu & Shi, Shaoping & Chen, Xinming & Wang, Xiaodong & Mao, Linzhi & Liu, Xiaojie, 2018. "Numerical simulations of flow interactions between steep hill terrain and large scale wind turbine," Energy, Elsevier, vol. 151(C), pages 740-747.
    2. Navid Shirzadi & Fuzhan Nasiri & Ramanunni Parakkal Menon & Pilar Monsalvete & Anton Kaifel & Ursula Eicker, 2023. "Smart Urban Wind Power Forecasting: Integrating Weibull Distribution, Recurrent Neural Networks, and Numerical Weather Prediction," Energies, MDPI, vol. 16(17), pages 1-17, August.
    3. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    4. Dimitrios Michos & Francky Catthoor & Dimitris Foussekis & Andreas Kazantzidis, 2024. "A CFD Model for Spatial Extrapolation of Wind Field over Complex Terrain—Wi.Sp.Ex," Energies, MDPI, vol. 17(16), pages 1-15, August.
    5. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    2. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    3. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    4. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    5. Fan, Shuanglong & Liu, Zhenqing, 2025. "Investigation of fully coupled wind field simulations in complex terrain wind farms considering automatic upwind control of turbines," Renewable Energy, Elsevier, vol. 239(C).
    6. Michiel Fremouw & Annamaria Bagaini & Paolo De Pascali, 2020. "Energy Potential Mapping: Open Data in Support of Urban Transition Planning," Energies, MDPI, vol. 13(5), pages 1-15, March.
    7. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    8. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    9. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    10. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    11. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    12. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.
    13. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.
    14. Kamali, Sadegh & Amraee, Turaj, 2017. "Blackout prediction in interconnected electric energy systems considering generation re-dispatch and energy curtailment," Applied Energy, Elsevier, vol. 187(C), pages 50-61.
    15. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    16. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    17. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    18. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    19. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    20. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5493-:d:1512930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.