Short-Term Electricity Futures Investment Strategies for Power Producers Based on Multi-Agent Deep Reinforcement Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
- Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
- Yucekaya, A., 2022. "Electricity trading for coal-fired power plants in Turkish power market considering uncertainty in spot, derivatives and bilateral contract market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Xiao, Jihong & Wang, Yudong, 2022. "Macroeconomic uncertainty, speculation, and energy futures returns: Evidence from a quantile regression," Energy, Elsevier, vol. 241(C).
- Jaeck, Edouard & Lautier, Delphine, 2016. "Volatility in electricity derivative markets: The Samuelson effect revisited," Energy Economics, Elsevier, vol. 59(C), pages 300-313.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Wenhui & Zhang, Jiuyang & Li, Ruan & Zha, Ruiming, 2021. "A transaction case analysis of the development of generation rights trading and existing shortages in China," Energy Policy, Elsevier, vol. 149(C).
- Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
- Moradi, Amir & Salehi, Javad & Shafie-khah, Miadreza, 2024. "An interactive framework for strategic participation of a price-maker energy hub in the local gas and power markets based on the MPEC method," Energy, Elsevier, vol. 307(C).
- Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
- Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
- Kursad Derinkuyu & Fehmi Tanrisever & Nermin Kurt & Gokhan Ceyhan, 2020. "Optimizing Day-Ahead Electricity Market Prices: Increasing the Total Surplus for Energy Exchange Istanbul," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 700-716, July.
- Ricardo Raineri, 2025. "Power Shift: Decarbonization and the New Dynamics of Energy Markets," Energies, MDPI, vol. 18(3), pages 1-52, February.
- Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
- Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
- Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
- Algirdas Justinas Staugaitis & Bernardas Vaznonis, 2022. "Short-Term Speculation Effects on Agricultural Commodity Returns and Volatility in the European Market Prior to and during the Pandemic," Agriculture, MDPI, vol. 12(5), pages 1-26, April.
- Russo, Marianna & Bertsch, Valentin, 2020.
"A looming revolution: Implications of self-generation for the risk exposure of retailers,"
Energy Economics, Elsevier, vol. 92(C).
- Russo, Marianna & Bertsch, Valentin, 2018. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Papers WP597, Economic and Social Research Institute (ESRI).
- Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
- Delphine H. Lautier, Franck Raynaud, and Michel A. Robe, 2019.
"Shock Propagation Across the Futures Term Structure: Evidence from Crude Oil Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
- Delphine H. Lautier & Franck Raynaud & Michel A. Robe, 2019. "Shock Propagation Across the Futures Term Structure: Evidence from Crude Oil Prices," The Energy Journal, , vol. 40(3), pages 125-154, May.
- Delphine Lautier & Franck Raynaud & Michel Robe, 2017. "Shocks propagation across the futures term structure : evidence from crude oil prices," Post-Print hal-01781765, HAL.
- Delphine Lautier & Franck Raynaud & Michel Robe, 2019. "Shock propagation across the futures term structure: evidence from crude oil prices," Post-Print hal-02307118, HAL.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Markus Hang & Jerome Geyer-Klingeberg & Andreas W. Rathgeber & Clémence Alasseur & Lena Wichmann, 2021. "Interaction effects of corporate hedging activities for a multi-risk exposure: evidence from a quasi-natural experiment," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 789-818, February.
- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Kruthof, Garvin & Müller, Sebastian, 2025. "Can deep reinforcement learning beat 1N," Finance Research Letters, Elsevier, vol. 75(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5350-:d:1508027. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.