IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5323-d1506844.html
   My bibliography  Save this article

Modeling of Liquefied Natural Gas Cold Power Generation for Access to the Distribution Grid

Author

Listed:
  • Yu Qi

    (School of Electric Engineering, Hebei University of Science and Technology, Shijiazhuang 050027, China)

  • Pengliang Zuo

    (Caofeidian Xintian LNG Co., Ltd., Tangshan 063200, China)

  • Rongzhao Lu

    (Caofeidian Xintian LNG Co., Ltd., Tangshan 063200, China)

  • Dongxu Wang

    (Caofeidian Xintian LNG Co., Ltd., Tangshan 063200, China)

  • Yingjun Guo

    (School of Electric Engineering, Hebei University of Science and Technology, Shijiazhuang 050027, China)

Abstract

Cold energy generation is an important part of liquefied natural gas (LNG) cold energy cascade utilization, and existing studies lack a specific descriptive model for LNG cold energy transmission to the AC subgrid. Therefore, this paper proposes a descriptive model for the grid-connected process of cold energy generation at LNG stations. First, the expansion kinetic energy transfer of the intermediate work mass is derived and analyzed in the LNG unipolar Rankine cycle structure, the mathematical relationship between the turbine output mechanical power and the variation in the work mass flow rate and pressure is established, and the variations in the LNG heat exchanger temperature difference, seawater flow rate, and the turbine temperature difference in the cycle system are investigated. Secondly, based on the fifth-order equation of state of the synchronous generator, the expressions of its electromagnetic power, output AC frequency, and voltage were analyzed. Finally, the average equivalent models of the machine-side and grid-side converters are established using a direct-fed grid-connected structure, thus forming a descriptive model of the overall drive process. The ORC model is built in Aspen HYSIS to obtain the time series expression of the torque output of the turbine; based on the ORC output torque, the permanent magnet synchronous generator (PMGSG) as well as the direct-fed grid-connected structure are built in MATLAB/Simulink, and the active power and current outputs of the grid-following-type voltage vector control method and the grid-forming-type power-angle synchronous control method are also verified.

Suggested Citation

  • Yu Qi & Pengliang Zuo & Rongzhao Lu & Dongxu Wang & Yingjun Guo, 2024. "Modeling of Liquefied Natural Gas Cold Power Generation for Access to the Distribution Grid," Energies, MDPI, vol. 17(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5323-:d:1506844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    2. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    3. Cui, Xiangna & Chen, Xi & Gao, Zhongyang, 2024. "Research on the power generation performance and optimization of thermoelectric generators for recycling remaining cold energy," Energy, Elsevier, vol. 299(C).
    4. Chen, Wei-Hsin & Lin, Yen-Kuan & Luo, Ding & Jin, Liwen & Hoang, Anh Tuan & Saw, Lip Huat & Nižetić, Sandro, 2023. "Effects of material doping on the performance of thermoelectric generator with/without equal segments," Applied Energy, Elsevier, vol. 350(C).
    5. Pan, Jie & Cao, Qinghan & Li, Mofan & Li, Ran & Tang, Linghong & Bai, Junhua, 2024. "Energy integration of light hydrocarbon separation, LNG cold energy power generation, and BOG combustion: Thermo-economic optimization and analysis," Applied Energy, Elsevier, vol. 356(C).
    6. Marmolejo-Correa, Danahe & Gundersen, Truls, 2012. "A comparison of exergy efficiency definitions with focus on low temperature processes," Energy, Elsevier, vol. 44(1), pages 477-489.
    7. Sun, Zhixin & Lai, Jianpeng & Wang, Shujia & Wang, Tielong, 2018. "Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures," Energy, Elsevier, vol. 147(C), pages 688-700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zetong Li & Xiaolei Si & Yongchao Zhao & Hongyan Zhao & Zheng Cai & Yingjun Guo, 2025. "Analysis of Coupled Liquid Air Energy Storage and Liquefied Natural Gas Cold Energy Cascade Utilization System," Energies, MDPI, vol. 18(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xiangna & Chen, Xi & Gao, Zhongyang, 2024. "Research on the power generation performance and optimization of thermoelectric generators for recycling remaining cold energy," Energy, Elsevier, vol. 299(C).
    2. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    3. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
    4. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    5. Sermsuk, Maytungkorn & Sukjai, Yanin & Wiboonrat, Montri & Kiatkittipong, Kunlanan, 2022. "Feasibility study of a combined system of electricity generation and cooling from liquefied natural gas to reduce the electricity cost of data centres," Energy, Elsevier, vol. 254(PA).
    6. Liu, Jingyuan & Zhou, Tian & Yang, Sheng, 2024. "Advanced exergy and exergoeconomic analysis of a multi-stage Rankine cycle system combined with hydrate energy storage recovering LNG cold energy," Energy, Elsevier, vol. 288(C).
    7. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    8. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
    9. Daniarta, Sindu & Błasiak, Przemysław & Kolasiński, Piotr & Imre, Attila R., 2024. "Sustainability by means of cold energy utilisation-to-power conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    10. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    11. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    14. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Zetong Li & Xiaolei Si & Yongchao Zhao & Hongyan Zhao & Zheng Cai & Yingjun Guo, 2025. "Analysis of Coupled Liquid Air Energy Storage and Liquefied Natural Gas Cold Energy Cascade Utilization System," Energies, MDPI, vol. 18(6), pages 1-15, March.
    16. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    17. Aslambakhsh, Amir Hamzeh & Moosavian, Mohammad Ali & Amidpour, Majid & Hosseini, Mohammad & AmirAfshar, Saeedeh, 2018. "Global cost optimization of a mini-scale liquefied natural gas plant," Energy, Elsevier, vol. 148(C), pages 1191-1200.
    18. Li, Biao & Xie, Heping & Sun, Licheng & Gao, Tianyi & Xia, Entong & Liu, Bowen & Wang, Jun & Long, Xiting, 2025. "Advanced exergy analysis and multi-objective optimization of dual-loop ORC utilizing LNG cold energy and geothermal energy," Renewable Energy, Elsevier, vol. 239(C).
    19. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    20. Luo, Ding & Yang, Shuo & Zhang, Haokang & Cao, Jin & Yan, Yuying & Chen, Hao, 2025. "Performance improvement of an automotive thermoelectric generator by introducing a novel split fin structure," Applied Energy, Elsevier, vol. 382(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5323-:d:1506844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.