Global cost optimization of a mini-scale liquefied natural gas plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.01.127
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
- Na, Jonggeol & Lim, Youngsub & Han, Chonghun, 2017. "A modified DIRECT algorithm for hidden constraints in an LNG process optimization," Energy, Elsevier, vol. 126(C), pages 488-500.
- Mokarizadeh Haghighi Shirazi, M. & Mowla, D., 2010. "Energy optimization for liquefaction process of natural gas in peak shaving plant," Energy, Elsevier, vol. 35(7), pages 2878-2885.
- Marmolejo-Correa, Danahe & Gundersen, Truls, 2012. "A comparison of exergy efficiency definitions with focus on low temperature processes," Energy, Elsevier, vol. 44(1), pages 477-489.
- Abdollahi-Demneh, Farzad & Moosavian, Mohammad Ali & Omidkhah, Mohammad Reza & Bahmanyar, Hossein, 2011. "Calculating exergy in flowsheeting simulators: A HYSYS implementation," Energy, Elsevier, vol. 36(8), pages 5320-5327.
- Song, Rui & Cui, Mengmeng & Liu, Jianjun, 2017. "Single and multiple objective optimization of a natural gas liquefaction process," Energy, Elsevier, vol. 124(C), pages 19-28.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
- Palizdar, Ali & Ramezani, Talieh & Nargessi, Zahra & AmirAfshar, Saeedeh & Abbasi, Mojgan & Vatani, Ali, 2019. "Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas," Energy, Elsevier, vol. 168(C), pages 542-557.
- Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
- Eduardo J. C. Cavalcanti & Monica Carvalho, 2021. "Tackling Dissipative Components Based on the SPECO Approach: A Cryogenic Heat Exchanger Used in Natural Gas Liquefaction," Energies, MDPI, vol. 14(20), pages 1-19, October.
- Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
- Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
- Dara, Satyadileep & Abdulqader, Haytham & Al Wahedi, Yasser & Berrouk, Abdallah S., 2020. "Countrywide optimization of natural gas supply chain: From wells to consumers," Energy, Elsevier, vol. 196(C).
- Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
- Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
- Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
- Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
- Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
- Lin, Wensheng & Xiong, Xiaojun & Gu, Anzhong, 2018. "Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal," Energy, Elsevier, vol. 161(C), pages 870-877.
- Jin, Chunhe & Yuan, Yilong & Son, Heechang & Lim, Youngsub, 2022. "Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units," Energy, Elsevier, vol. 238(PA).
- Li, Yong & Xie, Gongnan & Sunden, Bengt & Lu, Yuanwei & Wu, Yuting & Qin, Jiang, 2018. "Performance study on a single-screw compressor for a portable natural gas liquefaction process," Energy, Elsevier, vol. 148(C), pages 1032-1045.
- Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
- Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
- Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Exergy assessment of single and dual pressure industrial ammonia synthesis units," Energy, Elsevier, vol. 141(C), pages 2540-2558.
- Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
- Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
- Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
- Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
- Yoonho, Lee, 2019. "LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane," Energy, Elsevier, vol. 173(C), pages 857-869.
- Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
- Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
More about this item
Keywords
Mini LNG plant; Single mixed refrigerant; PRICO process; Optimization; Genetic algorithm; Exergy analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:1191-1200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.