IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4952-d1491644.html
   My bibliography  Save this article

Charging of an Air–Rock Bed Thermal Energy Storage under Natural and Forced Convection

Author

Listed:
  • Ashenafi Kebedom Abrha

    (School of Mechanical and Industrial Engineering, EiT-M, Mekelle University, Mekelle 231, Ethiopia)

  • Mebrahtu Kidanu Teklehaymanot

    (School of Mechanical and Industrial Engineering, EiT-M, Mekelle University, Mekelle 231, Ethiopia)

  • Mulu Bayray Kahsay

    (School of Mechanical and Industrial Engineering, EiT-M, Mekelle University, Mekelle 231, Ethiopia
    Department of Energy and Process Engineering, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway)

  • Ole Jørgen Nydal

    (Department of Energy and Process Engineering, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway)

Abstract

An air-rock bed thermal storage system was designed for small-scale powered generation and analyzed with computational fluid dynamics (CFD) using ANSYS-Fluent simulation. An experimental system was constructed to compare and validate the simulation model results. The storage unit is a cylindrical steel container with granite rock pebbles as a storage medium. The CFD simulation used a porous flow model. Transient-state simulations were performed on a 2D axisymmetric model using a pressure-based solver. During charging, heat input that keeps the bottom temperature at 550 °C was applied to raise the storage temperature. Performance analysis was conducted under various porosities, considering natural and forced convection. The natural convection analysis showed insignificant convection contribution after 10 h of charging, as observed in both average air velocity and the temperature profile plots. The temperature distribution profiles at various positions for both convection modes showed good agreement between the simulation and experimental results. Additionally, both cases exhibited similar temperature growth trends, further validating the models. Forced convection reduced the charging time from 60 h to 5 h to store 70 MJ of energy at a porosity of 0.4, compared to natural convection, which stored only 50 MJ in the same time. This extended charging period was attributed to poor natural convective heat transfer, indicating that relying solely on natural convection for thermal energy storage under the given conditions is not practical. Using a small fan to enhance heat transfer, forced convection is a more practical method for charging the system, making it suitable for power generation applications.

Suggested Citation

  • Ashenafi Kebedom Abrha & Mebrahtu Kidanu Teklehaymanot & Mulu Bayray Kahsay & Ole Jørgen Nydal, 2024. "Charging of an Air–Rock Bed Thermal Energy Storage under Natural and Forced Convection," Energies, MDPI, vol. 17(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4952-:d:1491644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4952/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process," Energy, Elsevier, vol. 79(C), pages 337-350.
    2. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    3. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    2. Bruce J. Hardy & Claudio Corgnale & Stephanie N. Gamble, 2021. "Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    3. Huang, Shengyao & Lv, Laiquan & Rong, Yan & Zhou, Hao, 2024. "Experimental study on the thermal characteristics of a visualized shell-and-tube LHTES system at different endothermic and exothermic temperatures," Renewable Energy, Elsevier, vol. 221(C).
    4. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    5. Rehan Anwar & M. Veronica Sofianos, 2024. "Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review," Energies, MDPI, vol. 17(11), pages 1-20, May.
    6. Muhammad Sarmad Raza & Muhammad Irfan Abid & Muhammad Akmal & Hafiz Mudassir Munir & Zunaib Maqsood Haider & Muhammad Omer Khan & Basem Alamri & Mohammed Alqarni, 2024. "A Comprehensive Assessment of Storage Elements in Hybrid Energy Systems to Optimize Energy Reserves," Sustainability, MDPI, vol. 16(20), pages 1-27, October.
    7. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    8. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    9. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    10. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    11. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
    12. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    13. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    14. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    15. Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
    16. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    17. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    18. Ayah Marwan Rabi’ & Jovana Radulovic & James M. Buick, 2025. "Comparative Study of Different Gases for Packed-Bed Thermal Energy Storage Systems," Energies, MDPI, vol. 18(5), pages 1-19, March.
    19. Wei Wei & Yusong Guo & Kai Hou & Kai Yuan & Yi Song & Hongjie Jia & Chongbo Sun, 2021. "Distributed Thermal Energy Storage Configuration of an Urban Electric and Heat Integrated Energy System Considering Medium Temperature Characteristics," Energies, MDPI, vol. 14(10), pages 1-34, May.
    20. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4952-:d:1491644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.