IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4914-d1490057.html
   My bibliography  Save this article

Hybrid Long Short-Term Memory Wavelet Transform Models for Short-Term Electricity Load Forecasting

Author

Listed:
  • Agbassou Guenoukpati

    (Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), Université de Lomé, Lome P.O. Box 1515, Togo
    Laboratoire de Recherche en Sciences de l’Ingénieur (LARSI), Department of Electrical Engineering, Ecole Polytechnique de Lomé (EPL), Université de Lomé, Lome P.O. Box 1515, Togo)

  • Akuété Pierre Agbessi

    (Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), Université de Lomé, Lome P.O. Box 1515, Togo
    Laboratoire de Recherche en Sciences de l’Ingénieur (LARSI), Department of Electrical Engineering, Ecole Polytechnique de Lomé (EPL), Université de Lomé, Lome P.O. Box 1515, Togo)

  • Adekunlé Akim Salami

    (Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), Université de Lomé, Lome P.O. Box 1515, Togo
    Laboratoire de Recherche en Sciences de l’Ingénieur (LARSI), Department of Electrical Engineering, Ecole Polytechnique de Lomé (EPL), Université de Lomé, Lome P.O. Box 1515, Togo)

  • Yawo Amen Bakpo

    (Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), Université de Lomé, Lome P.O. Box 1515, Togo)

Abstract

To ensure the constant availability of electrical energy, power companies must consistently maintain a balance between supply and demand. However, electrical load is influenced by a variety of factors, necessitating the development of robust forecasting models. This study seeks to enhance electricity load forecasting by proposing a hybrid model that combines Sorted Coefficient Wavelet Decomposition with Long Short-Term Memory (LSTM) networks. This approach offers significant advantages in reducing algorithmic complexity and effectively processing patterns within the same class of data. Various models, including Stacked LSTM, Bidirectional Long Short-Term Memory (BiLSTM), Convolutional Neural Network—Long Short-Term Memory (CNN-LSTM), and Convolutional Long Short-Term Memory (ConvLSTM), were compared and optimized using grid search with cross-validation on consumption data from Lome, a city in Togo. The results indicate that the ConvLSTM model outperforms its counterparts based on Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and correlation coefficient (R 2 ) metrics. The ConvLSTM model was further refined using wavelet decomposition with coefficient sorting, resulting in the WT+ConvLSTM model. This proposed approach significantly narrows the gap between actual and predicted loads, reducing discrepancies from 10–50 MW to 0.5–3 MW. In comparison, the WT+ConvLSTM model surpasses Autoregressive Integrated Moving Average (ARIMA) models and Multilayer Perceptron (MLP) type artificial neural networks, achieving a MAPE of 0.485%, an RMSE of 0.61 MW, and an R 2 of 0.99. This approach demonstrates substantial robustness in electricity load forecasting, aiding stakeholders in the energy sector to make more informed decisions.

Suggested Citation

  • Agbassou Guenoukpati & Akuété Pierre Agbessi & Adekunlé Akim Salami & Yawo Amen Bakpo, 2024. "Hybrid Long Short-Term Memory Wavelet Transform Models for Short-Term Electricity Load Forecasting," Energies, MDPI, vol. 17(19), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4914-:d:1490057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vahid Nourani & Mehdi Komasi & Akira Mano, 2009. "A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2877-2894, November.
    2. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    3. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    2. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    3. repec:hum:wpaper:sfb649dp2012-067 is not listed on IDEAS
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    6. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    8. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    9. Miloš Božić & Miloš Stojanović & Zoran Stajić & Dragan Tasić, 2013. "A New Two-Stage Approach to Short Term Electrical Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-19, April.
    10. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    11. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    12. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    13. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    14. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    15. Niematallah Elamin & Mototsugu Fukushige, 2017. "The 2011 Japanese energy crisis: Effects on the magnitude and pattern of load demand," Discussion Papers in Economics and Business 17-19, Osaka University, Graduate School of Economics.
    16. Omar Jouma El-Hafez & Tarek Y. ElMekkawy & Mohamed Kharbeche & Ahmed Massoud, 2022. "Impact of COVID-19 Pandemic on Qatar Electricity Demand and Load Forecasting: Preparedness of Distribution Networks for Emerging Situations," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    17. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    18. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    19. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    20. Wei Wang & Bin Ma & Xing Guo & Yong Chen & Yonghong Xu, 2024. "A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction," Energies, MDPI, vol. 17(15), pages 1-18, July.
    21. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4914-:d:1490057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.