IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3736-d1445142.html
   My bibliography  Save this article

A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction

Author

Listed:
  • Wei Wang

    (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China)

  • Bin Ma

    (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China
    Beijing Laboratory for New Energy Vehicles, Beijing 100192, China)

  • Xing Guo

    (School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Yong Chen

    (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China
    Beijing Laboratory for New Energy Vehicles, Beijing 100192, China)

  • Yonghong Xu

    (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China
    Beijing Laboratory for New Energy Vehicles, Beijing 100192, China)

Abstract

Short vehicle speed prediction is important in predictive energy management strategies, and the accuracy of the prediction is beneficial for energy-saving performance. However, the nonlinear feature of the speed series hinders the improvement of prediction accuracy. In this study, a novel hybrid model that combines an autoregressive integrated moving average (ARIMA) and a long short-term memory (LSTM) model is proposed to handle the nonlinear part efficiently. Generally, the ARIMA component filters out linear trends from the speed series data, and the parameters of the ARIMA are determined with the analysis. Then the LSTM handles the residual normalized nonlinear items, which is the residual of ARIMA. Finally, the two parts of the prediction results are superimposed to obtain the final speed prediction results. To assess the performance of the hybrid model (ARIMA-LSTM), two tested driving cycles and two typical driving scenarios are subjected to rigorous analysis. The results demonstrate that the combined prediction model outperforms individual methods ARIMA and LSTM in dealing with complex, nonlinear variations, and exhibits significantly improved performance metrics, including root mean square error ( RMSE ), mean absolute error ( MAE ), and mean percentage error ( MAPE ). The proposed hybrid model provides a further improvement for the accuracy prediction of vehicle traveling processes.

Suggested Citation

  • Wei Wang & Bin Ma & Xing Guo & Yong Chen & Yonghong Xu, 2024. "A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction," Energies, MDPI, vol. 17(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3736-:d:1445142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    2. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    3. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    3. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    4. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
    9. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    12. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    13. Rahman, Md. Matiar & Hosan, Shahadat & Karmaker, Shamal Chandra & Chapman, Andrew J. & Saha, Bidyut Baran, 2021. "The effect of remittance on energy consumption: Panel cointegration and dynamic causality analysis for South Asian countries," Energy, Elsevier, vol. 220(C).
    14. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Manuel Jaramillo & Wilson Pavón & Lisbeth Jaramillo, 2024. "Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review," Data, MDPI, vol. 9(1), pages 1-23, January.
    16. Nejlaoui, Mohamed & Alghafis, Abdullah & Sadig, Hussain, 2022. "Six sigma robust multi-objective design optimization of flat plate collector system under uncertain design parameters," Energy, Elsevier, vol. 239(PA).
    17. Wang, Qiubao & Han, Zikun & Zhang, Xing & Yang, Yuejuan, 2021. "Dynamics of the delay-coupled bubble system combined with the stochastic term," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    19. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    20. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3736-:d:1445142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.