IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3621-d1441388.html
   My bibliography  Save this article

A Hybrid Energy System Based on Externally Fired Micro Gas Turbines, Waste Heat Recovery and Gasification Systems: An Energetic and Exergetic Performance Analysis

Author

Listed:
  • Fabrizio Reale

    (Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council, 80125 Napoli, Italy)

  • Patrizio Massoli

    (Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council, 80125 Napoli, Italy)

Abstract

The opportunities related to the adoption of synthetic gaseous fuels derived from solid biomass are limited by the issues caused by the peculiarities of the syngas. The aim of this paper is to analyze several possible layouts of hybrid energy systems, in which the main thermal source is the organic fraction of municipal solid wastes. The case of a small community of about 1000 persons is analyzed in this paper. The examined layouts coupled an externally fired micro gas turbine with a waste heat recovery system based on both an Organic Rankine Cycle and supercritical CO 2 gas turbines. A thermodynamic analysis has been carried out through the use of the commercial software Thermoflex 31, considering the losses of each component and the non-ideal behavior of the fluids. The results of the numerical analysis highlight that the introduction of a waste heat recovery system leads to an increase of at least 16% in the available net power, while a cascade hybrid energy grid can lead to a power enhancement of about 29%, with a considerable increase also in the energetic and exergetic global efficiencies.

Suggested Citation

  • Fabrizio Reale & Patrizio Massoli, 2024. "A Hybrid Energy System Based on Externally Fired Micro Gas Turbines, Waste Heat Recovery and Gasification Systems: An Energetic and Exergetic Performance Analysis," Energies, MDPI, vol. 17(15), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3621-:d:1441388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    2. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    3. Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
    4. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    5. Fabrizio Reale & Raniero Sannino, 2022. "Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
    6. Alireza Javanshir & Nenad Sarunac & Zahra Razzaghpanah, 2017. "Thermodynamic Analysis of ORC and Its Application for Waste Heat Recovery," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    7. Zendehboudi, Alireza, 2024. "Energy, exergy, and exergoeconomic analyses of an air source transcritical CO2 heat pump for simultaneous domestic hot water and space heating," Energy, Elsevier, vol. 290(C).
    8. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    9. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
    10. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
    11. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Reale & Raffaela Calabria & Patrizio Massoli, 2023. "Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC," Energies, MDPI, vol. 16(11), pages 1-19, May.
    2. David Vera & Francisco Jurado & Bárbara de Mena & Jesús C. Hernández, 2019. "A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes," Energies, MDPI, vol. 12(3), pages 1-18, February.
    3. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).
    4. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    5. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.
    6. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    7. Zhao, Yongming & Zhao, Lifeng & Wang, Bo & Zhang, Shijie & Chi, Jinling & Xiao, Yunhan, 2018. "Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle," Applied Energy, Elsevier, vol. 217(C), pages 480-495.
    8. Jie Ren & Zuoqin Qian & Xinyu Wang & Weilong Huang & Baolin Wang, 2024. "Investigation of a Biomass-Driven Cogeneration System Integrated with an Externally Fired Gas Turbine, Organic Rankine Cycle, and Absorption Refrigeration Cycle: Thermodynamic and Exergoeconomic Analy," Sustainability, MDPI, vol. 16(11), pages 1-35, May.
    9. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
    10. Fabrizio Reale, 2022. "Effects of Steam Injection on the Permissible Hydrogen Content and Gaseous Emissions in a Micro Gas Turbine Supplied by a Mixture of CH 4 and H 2 : A CFD Analysis," Energies, MDPI, vol. 15(8), pages 1-15, April.
    11. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    12. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    13. Astolfi, Marco & Alfani, Dario & Lasala, Silvia & Macchi, Ennio, 2018. "Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources," Energy, Elsevier, vol. 161(C), pages 1250-1261.
    14. Ruiz-Casanova, Eduardo & Rubio-Maya, Carlos & Ambriz-Díaz, Víctor M. & Gutiérrez Martínez, A., 2024. "Energy, exergy and exergoeconomic analyses and ANN-based three-objective optimization of a supercritical CO2 recompression Brayton cycle driven by a high-temperature geothermal reservoir," Energy, Elsevier, vol. 311(C).
    15. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    16. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.
    17. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    18. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).
    19. Fabrizio Reale, 2023. "The Allam Cycle: A Review of Numerical Modeling Approaches," Energies, MDPI, vol. 16(22), pages 1-22, November.
    20. Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3621-:d:1441388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.