IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3595-d1440182.html
   My bibliography  Save this article

A Generalized Load Model Considering the Fault Ride-Through Capability of Distributed PV Generation System

Author

Listed:
  • Haiyun Wang

    (State Grid Beijing Electric Power Company Electric Power Scientific Research Institute, Beijing 100075, China)

  • Qian Chen

    (State Grid Beijing Electric Power Company Electric Power Scientific Research Institute, Beijing 100075, China)

  • Linyu Zhang

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Xiyu Yin

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Han Cui

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Zhijian Zhang

    (State Grid Beijing Electric Power Company Electric Power Scientific Research Institute, Beijing 100075, China)

  • Huayue Wei

    (State Grid Beijing Electric Power Company Electric Power Scientific Research Institute, Beijing 100075, China)

  • Xiaoyue Chen

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

Considering the voltage stability problem brought by large-scale distributed PV access to the distribution network, this paper proposes a generalized load model that considers the fault ride-through capability of distributed PV. Firstly, the detailed model of the distribution network is established, and the detailed model is calibrated based on the measured data, the simulation errors are below 1%. And then establish a generalized load model considering distributed PV high and low voltage traversal ability. The sensitivity analysis results are used to rank the parameters to be identified, and the parameters with higher sensitivity are identified. The parameters are obtained from the detailed model and measured data, and four sets of parameters are identified and simulated under different PV penetration rates and fault conditions. The calculated fitting errors are less than 1%. The results show that the generalized load gray box model of the distribution network with distributed PV high and low voltage ride-through capability can reflect the dynamic characteristics of the distribution network well.

Suggested Citation

  • Haiyun Wang & Qian Chen & Linyu Zhang & Xiyu Yin & Han Cui & Zhijian Zhang & Huayue Wei & Xiaoyue Chen, 2024. "A Generalized Load Model Considering the Fault Ride-Through Capability of Distributed PV Generation System," Energies, MDPI, vol. 17(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3595-:d:1440182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karimi, M. & Mokhlis, H. & Naidu, K. & Uddin, S. & Bakar, A.H.A., 2016. "Photovoltaic penetration issues and impacts in distribution network – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 594-605.
    2. Paulescu, Marius & Brabec, Marek & Boata, Remus & Badescu, Viorel, 2017. "Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants," Energy, Elsevier, vol. 121(C), pages 792-802.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    5. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    6. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    7. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    8. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    9. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    10. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    11. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    12. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
    13. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    14. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    15. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    16. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    17. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
    18. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    19. Frank Pierie & Christian E. J. van Someren & Sandór N. M. Kruse & Gideon A. H. Laugs & René M. J. Benders & Henri C. Moll, 2021. "Local Balancing of the Electricity Grid in a Renewable Municipality; Analyzing the Effectiveness and Cost of Decentralized Load Balancing Looking at Multiple Combinations of Technologies," Energies, MDPI, vol. 14(16), pages 1-35, August.
    20. Dara Eam & Vannak Vai & Chhith Chhlonh & Samphors Eng, 2023. "Planning of an LVAC Distribution System with Centralized PV and Decentralized PV Integration for a Rural Village," Energies, MDPI, vol. 16(16), pages 1-19, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3595-:d:1440182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.