IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2791-d1410073.html
   My bibliography  Save this article

4E Study and Best Performance Analysis of a Hydrogen Multi-Generation Layout by Waste Energy Recovery of Combined SOFC-GT-ORC

Author

Listed:
  • Mohammad Zoghi

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

  • Nasser Hosseinzadeh

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

  • Saleh Gharaie

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

  • Ali Zare

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

Abstract

Different approaches have been suggested for the waste heat recovery of high-temperature exhausted gas of a solid oxide fuel cell (SOFC). In such systems, mostly gas turbine (GT) and organic Rankine cycle (ORC) are added as bottoming systems to the SOFC (Configuration 1). However, the SOFC-GT-ORC has a considerable amount of waste energy which can be recovered. In the present research, the waste energy of ORC in the heat rejection stage and the residual exhausted gas of the system were recovered by a thermoelectric generator (TEG) and a hot water unit, respectively. Then, the extra produced power in the TEG was directed to a proton exchange membrane electrolyzer and a reverse osmosis desalination unit (RODU) for hydrogen and potable water outputs. The performance of SOFC-GT, Configuration 1, and Configuration 2 was compared through a 4E (energy, exergy, exergy-economic, and environmental) analysis. In the best performance point, the exergy efficiency and unit cost of product (UCOP) of SOFC-GT were obtained as 69.41% and USD 26.53/GJ. The exergy efficiency increased by 2.56% and 2.86%, and the UCOP rose by 0.45% and 12.25% in Configurations 1 and 2. So, the overall performance of Configuration 1 was acceptable and Configuration 2 led to the highest exergy efficiency, while its economic performance was not competitive because of the high investment cost of RODU.

Suggested Citation

  • Mohammad Zoghi & Nasser Hosseinzadeh & Saleh Gharaie & Ali Zare, 2024. "4E Study and Best Performance Analysis of a Hydrogen Multi-Generation Layout by Waste Energy Recovery of Combined SOFC-GT-ORC," Energies, MDPI, vol. 17(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2791-:d:1410073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    2. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    3. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    4. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    2. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    3. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    4. Wang, Di & Zhang, Yuxin & Sun, Lingfang & Han, Xinrui & Zhou, Yunlong & Wang, Yanhong & Sun, Lu, 2024. "Multi-objective optimization and dynamic characteristic analysis of solid oxide fuel cell - Supercritical carbon dioxide brayton cycle hybrid system," Energy, Elsevier, vol. 313(C).
    5. Abedinia, Oveis & Shakibi, Hamid & Shokri, Afshar & Sobhani, Behnam & Sobhani, Behrouz & Yari, Mortaza & Bagheri, Mehdi, 2024. "Optimization of a syngas-fueled SOFC-based multigeneration system: Enhanced performance with biomass and gasification agent selection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Liu, Wenjun & Shi, Xiaomin, 2022. "Converting waste into electric energy and carbon fixation through biosyngas-fueled SOFC hybrid system: A simulation study," Renewable Energy, Elsevier, vol. 193(C), pages 725-743.
    7. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).
    8. Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).
    9. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    10. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    11. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    12. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    13. Khojaste Effatpanah, Saeed & Rahbari, Hamid Reza & Ahmadi, Mohammad H. & Farzaneh, Ali, 2023. "Green hydrogen production and utilization in a novel SOFC/GT-based zero-carbon cogeneration system: A thermodynamic evaluation," Renewable Energy, Elsevier, vol. 219(P2).
    14. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    15. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    16. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    17. Xie, Junen & Yan, Peigang & Liu, Yang & Liu, Zekuan & Xiu, Xinyan & Xu, Shiyi & Fang, Jiwei & Li, Chengjie & Qin, Jiang, 2024. "Analysis of the thermodynamic performance of the SOFC-GT system integrated solar energy based on reverse Brayton cycle," Energy, Elsevier, vol. 308(C).
    18. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    19. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    20. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2791-:d:1410073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.