IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2718-d1407912.html
   My bibliography  Save this article

Optimal Capacity and Charging Scheduling of Battery Storage through Forecasting of Photovoltaic Power Production and Electric Vehicle Charging Demand with Deep Learning Models

Author

Listed:
  • Fachrizal Aksan

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Vishnu Suresh

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Przemysław Janik

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

The transition from internal combustion engine vehicles to electric vehicles (EVs) is gaining momentum due to their significant environmental and economic benefits. This study addresses the challenges of integrating renewable energy sources, particularly solar power, into EV charging infrastructures by using deep learning models to predict photovoltaic (PV) power generation and EV charging demand. The study determines the optimal battery energy storage capacity and charging schedule based on the prediction result and actual data. A dataset of a 15 kWp rooftop PV system and simulated EV charging data are used. The results show that simple RNNs are most effective at predicting PV power due to their adept handling of simple patterns, while bidirectional LSTMs excel at predicting EV charging demand by capturing complex dynamics. The study also identifies an optimal battery storage capacity that will balance the use of the grid and surplus solar power through strategic charging scheduling, thereby improving the sustainability and efficiency of solar energy in EV charging infrastructures. This research highlights the potential for integrating renewable energy sources with advanced energy storage solutions to support the growing electric vehicle infrastructure.

Suggested Citation

  • Fachrizal Aksan & Vishnu Suresh & Przemysław Janik, 2024. "Optimal Capacity and Charging Scheduling of Battery Storage through Forecasting of Photovoltaic Power Production and Electric Vehicle Charging Demand with Deep Learning Models," Energies, MDPI, vol. 17(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2718-:d:1407912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gülsah Erdogan & Wiem Fekih Hassen, 2023. "Charging Scheduling of Hybrid Energy Storage Systems for EV Charging Stations," Energies, MDPI, vol. 16(18), pages 1-29, September.
    2. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    3. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    4. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    2. Mirza, Adeel Feroz & Shu, Zhaokun & Usman, Muhammad & Mansoor, Majad & Ling, Qiang, 2024. "Quantile-transformed multi-attention residual framework (QT-MARF) for medium-term PV and wind power prediction," Renewable Energy, Elsevier, vol. 220(C).
    3. Li, Guozhu & Ding, Chenjun & Zhao, Naini & Wei, Jiaxing & Guo, Yang & Meng, Chong & Huang, Kailiang & Zhu, Rongxin, 2024. "Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network," Energy, Elsevier, vol. 293(C).
    4. Xiaoying Ren & Fei Zhang & Yongrui Sun & Yongqian Liu, 2024. "A Novel Dual-Channel Temporal Convolutional Network for Photovoltaic Power Forecasting," Energies, MDPI, vol. 17(3), pages 1-19, February.
    5. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    6. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    7. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    8. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    9. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    10. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    11. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    12. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    13. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
    15. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    16. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
    17. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    18. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    19. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    20. Jun Su & Zhiyuan Zeng & Chaolong Tang & Zhiquan Liu & Tianyou Li, 2024. "A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart," Energies, MDPI, vol. 17(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2718-:d:1407912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.