IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2658-d1405517.html
   My bibliography  Save this article

A Combined Model of Convolutional Neural Network and Bidirectional Long Short-Term Memory with Attention Mechanism for Load Harmonics Forecasting

Author

Listed:
  • Excellence M. Kuyumani

    (Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa)

  • Ali N. Hasan

    (Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa)

  • Thokozani C. Shongwe

    (Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa)

Abstract

In the increasingly complex and dynamic electrical power system, forecasting harmonics is key to developing and ensuring a clean power supply. The traditional methods have achieved some degree of success. However, they often fail to forecast complex and dynamic harmonics, highlighting the serious need to improve the forecasting performance. Precise forecasting of electrical power system harmonics is challenging and demanding, owing to the increased frequency with harmonic noise. The occurrence of harmonics is stochastic in nature; it has taken a long time for the development of dependable and efficient models. Several machine learning and statistical methods have produced positive results with minimal errors. To improve the prognostic accuracy of the power supply system, this study proposes an organic hybrid combination of a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with the attention mechanism (AM) method (CNN-BiLSTM-AM) to forecast load harmonics. CNN models intricate non-linear systems with multi-dimensionality aspects. LSTM performs better when dealing with exploding gradients in time series data. Bi-LSTM has two LSTM layers: one layer processes data in the onward direction and the other in the regressive direction. Bi-LSTM uses both preceding and subsequent data, and as a result, it has better performance compared to RNN and LSTM. AM’s purpose is to make desired features outstanding. The CNN-BiLSTM-AM method performed better than the other five methods, with a prediction accuracy of 92.366% and a root mean square error (RMSE) of 0.000000222.

Suggested Citation

  • Excellence M. Kuyumani & Ali N. Hasan & Thokozani C. Shongwe, 2024. "A Combined Model of Convolutional Neural Network and Bidirectional Long Short-Term Memory with Attention Mechanism for Load Harmonics Forecasting," Energies, MDPI, vol. 17(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2658-:d:1405517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    4. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    6. Fu, Yuqiang & Wang, Jun & Peng, Rui & Yang, Lechang & Meng, Xiaoyang, 2024. "Random-time component reallocation and system replacement policy with minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Cheng, Wanqing & Zhao, Xiujie, 2023. "Maintenance optimization for dependent two-component degrading systems subject to imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    9. Leppinen, Jussi & Punkka, Antti & Ekholm, Tommi & Salo, Ahti, 2025. "An optimization model for determining cost-efficient maintenance policies for multi-component systems with economic and structural dependencies," Omega, Elsevier, vol. 130(C).
    10. Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.
    11. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    12. Verleijsdonk, Peter & van Jaarsveld, Willem & Kapodistria, Stella, 2024. "Scalable policies for the dynamic traveling multi-maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 319(1), pages 121-134.
    13. Carpitella, Silvia & Mzougui, Ilyas & Benítez, Julio & Carpitella, Fortunato & Certa, Antonella & Izquierdo, Joaquín & La Cascia, Marco, 2021. "A risk evaluation framework for the best maintenance strategy: The case of a marine salt manufacture firm," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Crespo del Castillo, Adolfo & Marcos, José Antonio & Parlikad, Ajith Kumar, 2023. "Dynamic fleet maintenance management model applied to rolling stock," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    15. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    16. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    17. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    18. Zhang, Jian-Xun & Du, Dang-Bo & Si, Xiao-Sheng & Hu, Chang-Hua & Zhang, Han-Wen, 2021. "Joint optimization of preventive maintenance and inventory management for standby systems with hybrid-deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Yikai Ma & Wenjuan Zhang & Juergen Branke, 2024. "Genetic programming hyper-heuristic for evolving a maintenance policy for wind farms," Journal of Heuristics, Springer, vol. 30(5), pages 423-451, December.
    20. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2658-:d:1405517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.