IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023005215.html
   My bibliography  Save this article

Dynamic fleet maintenance management model applied to rolling stock

Author

Listed:
  • Crespo del Castillo, Adolfo
  • Marcos, José Antonio
  • Parlikad, Ajith Kumar

Abstract

This paper presents a model for optimising fleet maintenance management with a particular application to train rolling stock fleets. The proposed model produces a joint schedule for train operations and opportunistic predictive maintenance activities with an aim to maximise operational useful life. The model opportunistically allocates predictive maintenance interventions to existing preventive maintenance schedule considering the estimated remaining useful life (RUL) of critical components whilst ensuring fleet availability to meet operational demands as well as resource and time constraints at the maintenance depots. The proposed methodology is described in three phases: (i) definition of the operating context and maintenance resources; (ii) evaluation of feasible opportunistic maintenance timeslots; (iii) optimal maintenance and operations scheduling. The optimisation model, developed as a Mixed Integer Linear Programming problem, is applied to a real industrial case study on a fleet of high-speed trains in Spain. The results show significant improvement in the utilisation of operational life of components compared to the current policies used by the company. Although the model was developed with particular consideration to the train fleets, it can be adapted for other sectors such as bus fleets and airlines with similar operational constraints.

Suggested Citation

  • Crespo del Castillo, Adolfo & Marcos, José Antonio & Parlikad, Ajith Kumar, 2023. "Dynamic fleet maintenance management model applied to rolling stock," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005215
    DOI: 10.1016/j.ress.2023.109607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moudani, Walid El & Mora-Camino, Félix, 2000. "A dynamic approach for aircraft assignment and maintenance scheduling by airlines," Journal of Air Transport Management, Elsevier, vol. 6(4), pages 233-237.
    2. Petchrompo, Sanyapong & Li, Hao & Erguido, Asier & Riches, Chris & Parlikad, Ajith Kumar, 2020. "A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Zheng, Ran, 2024. "Capacity-based daily maintenance optimization of urban bus with multi-objective failure priority ranking," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Lu, Yaohui & Wang, Shaoping & Zhang, Chao & Chen, Rentong & Dui, Hongyan & Mu, Rui, 2024. "Adaptive maintenance window-based opportunistic maintenance optimization considering operational reliability and cost," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Crespo del Castillo, Adolfo & Parlikad, Ajith Kumar, 2024. "Dynamic fleet management: Integrating predictive and preventive maintenance with operation workload balance to minimise cost," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crespo del Castillo, Adolfo & Parlikad, Ajith Kumar, 2024. "Dynamic fleet management: Integrating predictive and preventive maintenance with operation workload balance to minimise cost," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Leppinen, Jussi & Punkka, Antti & Ekholm, Tommi & Salo, Ahti, 2025. "An optimization model for determining cost-efficient maintenance policies for multi-component systems with economic and structural dependencies," Omega, Elsevier, vol. 130(C).
    3. Pedro Nunes & Eugénio Rocha & José Santos, 2024. "Adaptive Framework for Maintenance Scheduling Based on Dynamic Preventive Intervals and Remaining Useful Life Estimation," Future Internet, MDPI, vol. 16(6), pages 1-17, June.
    4. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    5. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    9. Petchrompo, Sanyapong & Wannakrairot, Anupong & Parlikad, Ajith Kumar, 2022. "Pruning Pareto optimal solutions for multi-objective portfolio asset management," European Journal of Operational Research, Elsevier, vol. 297(1), pages 203-220.
    10. Zhou, Hang & Farsi, Maryam & Harrison, Andrew & Parlikad, Ajith Kumar & Brintrup, Alexandra, 2023. "Civil aircraft engine operation life resilient monitoring via usage trajectory mapping on the reliability contour," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Dias, Luis & Leitão, Armando & Guimarães, Luis, 2021. "Resource definition and allocation for a multi-asset portfolio with heterogeneous degradation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Diaz, Ermilso & Muñoz-Añasco, Mariela & Salvador, Antonio Correcher & García, Emilio, 2023. "Simulation model for the study of maintenance actions in a homogeneous multi-unit system of interchangeable components, with cannibalization," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    15. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    16. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    18. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    19. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.