IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2595-d1403448.html
   My bibliography  Save this article

Analysis of Model Predictive Control-Based Energy Management System Performance to Enhance Energy Transmission

Author

Listed:
  • Israth Jahan Chowdhury

    (Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia)

  • Siti Hajar Yusoff

    (Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia)

  • Teddy Surya Gunawan

    (Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia)

  • Suriza Ahmad Zabidi

    (Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia)

  • Mohd Shahrin Bin Abu Hanifah

    (Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia)

  • Siti Nadiah Mohd Sapihie

    (Petronas Sdn Bhd, Bandar Baru Bangi, Kajang 43000, Malaysia)

  • Bernardi Pranggono

    (School of Computing and Information Science, Anglia Ruskin University, Cambridge CB1 1PT, UK)

Abstract

A supervisory control system using Model Predictive Control (MPC) has been designed to evaluate the efficiency of wind and solar power and is consistent with the cost function in the supervisory MPC optimization problem. A two-layer Economic Model Predictive Control (EMPC) framework has been developed and has improved results such as cost reductions compared to recent advanced methods. A speed Generalized Predictive Control (GPC) scheme intended for wind energy conversion systems was developed last year, with simulation results indicating superior performance over previous models. A Hierarchical Distributed Model Predictive Control (HDMPC) can work under different weather conditions with improved economic performance and keep a good balance between power delivery and load demand. An energy management system (EMS), built on the basis of MPC, can be quite lucrative for the sphere in the present climate scenario, with the selection and testing of suitable algorithms, controlled processes, cost functions, and a set of constraints as well as with proper optimizations carried out. Previous research indicates that an MPC-based EMS has the potential to be a good solution to manage energy well and also introduced it to the world experimentally. The key intention of this research study is to explore the existing advances that have been introduced and to analyze their performance in terms of cost function, different sets of constraints, variant conversion processes, and scalability to achieve more optimized operation of MPC-based EMS.

Suggested Citation

  • Israth Jahan Chowdhury & Siti Hajar Yusoff & Teddy Surya Gunawan & Suriza Ahmad Zabidi & Mohd Shahrin Bin Abu Hanifah & Siti Nadiah Mohd Sapihie & Bernardi Pranggono, 2024. "Analysis of Model Predictive Control-Based Energy Management System Performance to Enhance Energy Transmission," Energies, MDPI, vol. 17(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2595-:d:1403448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    2. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    2. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    3. Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
    5. Emmanuel Senyo Fianu, 2022. "Analyzing and Forecasting Multi-Commodity Prices Using Variants of Mode Decomposition-Based Extreme Learning Machine Hybridization Approach," Forecasting, MDPI, vol. 4(2), pages 1-27, June.
    6. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    7. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    8. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    9. Polanco Martínez, Josué M. & Abadie, Luis M. & Fernández-Macho, J., 2018. "A multi-resolution and multivariate analysis of the dynamic relationships between crude oil and petroleum-product prices," Applied Energy, Elsevier, vol. 228(C), pages 1550-1560.
    10. Xiaotao Zhang & Zihui Xia & Feng He & Jing Hao, 2025. "Forecasting crude oil prices with alternative data and a deep learning approach," Annals of Operations Research, Springer, vol. 345(2), pages 1165-1191, February.
    11. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    12. E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
    13. Korotin, Vladimir & Dolgonosov, Maxim & Popov, Victor & Korotina, Olesya & Korolkova, Inna, 2019. "The Ukrainian crisis, economic sanctions, oil shock and commodity currency: Analysis based on EMD approach," Research in International Business and Finance, Elsevier, vol. 48(C), pages 156-168.
    14. Liu, Chang & Sun, Xiaolei & Wang, Jun & Li, Jianping & Chen, Jianming, 2021. "Multiscale information transmission between commodity markets: An EMD-Based transfer entropy network," Research in International Business and Finance, Elsevier, vol. 55(C).
    15. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    16. He, Kaijian & Wang, Lijun & Zou, Yingchao & Lai, Kin Keung, 2014. "Value at risk estimation with entropy-based wavelet analysis in exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 62-71.
    17. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    18. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    19. Bijay Neupane & Wei Lee Woon & Zeyar Aung, 2017. "Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting," Energies, MDPI, vol. 10(1), pages 1-27, January.
    20. Godarzi, Ali Abbasi & Amiri, Rohollah Madadi & Talaei, Alireza & Jamasb, Tooraj, 2014. "Predicting oil price movements: A dynamic Artificial Neural Network approach," Energy Policy, Elsevier, vol. 68(C), pages 371-382.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2595-:d:1403448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.