IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2427-d1397411.html
   My bibliography  Save this article

Performance Improvement of a Limaçon Gas Expander Using an Inlet Control Valve: Two Case Studies

Author

Listed:
  • Md Shazzad Hossain

    (Institute of Innovation, Science and Sustainability, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, Australia)

  • Ibrahim Sultan

    (Institute of Innovation, Science and Sustainability, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, Australia)

  • Truong Phung

    (Institute of Innovation, Science and Sustainability, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, Australia)

  • Apurv Kumar

    (Institute of Innovation, Science and Sustainability, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, Australia)

Abstract

Renewable energy-based compact energy-generation systems based on the organic Rankine cycle (ORC) can be employed to meet the ever-growing thirst for affordable and clean energy. The overall performance and effectiveness of ORC systems are constrained by the low efficiency of the gas expander, specifically the positive displacement expander, which is responsible for energy conversion from the working fluid. This low-efficiency scenario can be significantly improved by employing a control valve to regulate and restrict the flow of the working fluid into the expander. A control valve can effectively curve the loss of costly compressed and energized working fluids by allowing them to expand in the expander chamber before discharging through the outlet port. They can thus be used to regulate the amount of energy yield and output power. In this work, two direct drive rotary valves (DDRVs) operated by a stepper motor (SM-DDRV) and rotary solenoid (RS-DDRV) are suggested, and the behavior of the valves is examined. The effect of friction and temperature on the valve response is also studied. Additionally, the effect of inlet control valves on the overall system performance of the limaçon expander is assessed. Thermodynamic properties such as the isentropic efficiency and filling factor are also computed. The effect of leakage due to valve response delay is analyzed at different inlet pressures. The performance indices are compared to the expander performance without any inlet valve. The SM-DDRV setup results in a 14.86% increase in isentropic efficiency and a 220% increase in the filling factor, whereas the RS-DDRV performs moderately with a 2.58% increase in isentropic efficiency and an 80% increase in the filling factor compared to a ported expander. The SM-DDRV provides better performance indices compared to the RS-DDRV and without valve setups. However, the performance of the limaçon expander with the SM-DDRV is sensitive to the inlet pressure and degrades at higher pressure. Overall, the valves proposed in this work present key insights into improving the performance characteristics of gas expanders of ORC systems.

Suggested Citation

  • Md Shazzad Hossain & Ibrahim Sultan & Truong Phung & Apurv Kumar, 2024. "Performance Improvement of a Limaçon Gas Expander Using an Inlet Control Valve: Two Case Studies," Energies, MDPI, vol. 17(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2427-:d:1397411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2427/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2427-:d:1397411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.