IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2391-d1395868.html
   My bibliography  Save this article

Active Planning for Virtual Microgrids with Demand-Side and Distributed Energy Resources

Author

Listed:
  • Lechuan Piao

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • Fei Xue

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • Shaofeng Lu

    (Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510006, China)

  • Lin Jiang

    (Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK)

  • Bing Han

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • Xu Xu

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

Abstract

In this paper, the notion of a cohesive and self-sufficient grid is proposed. Based on a cohesive and self-sufficient virtual microgrid, an active distribution network is optimally planned, and an optimal configuration of demand-side resources, distributed generations, and energy storage systems are generated. To cope with stochastic uncertainty from forecast error in wind speed and load, flexibility reserves are needed. In this paper, the supply relation between flexibility and uncertainty is quantified and integrated in an innovative index which is defined as cohesion. The optimization objectives are a minimized operational cost and system net-ability cohesion as well as self-sufficiency, which is defined as the abilities both to supply local load and to deal with potential uncertainty. After testing the optimal configuration in the PG&E 69 bus system, it is found that with a more cohesive VM partition, the self-sufficiency of VMs is also increased. Also, a case study on uncertainty-caused system imbalance is carried out to show how flexibility resources are utilized in real-time operational balance.

Suggested Citation

  • Lechuan Piao & Fei Xue & Shaofeng Lu & Lin Jiang & Bing Han & Xu Xu, 2024. "Active Planning for Virtual Microgrids with Demand-Side and Distributed Energy Resources," Energies, MDPI, vol. 17(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2391-:d:1395868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    2. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Zhang, Yin & Qian, Tong & Tang, Wenhu, 2022. "Buildings-to-distribution-network integration considering power transformer loading capability and distribution network reconfiguration," Energy, Elsevier, vol. 244(PB).
    4. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    5. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    7. Yamujala, Sumanth & Kushwaha, Priyanka & Jain, Anjali & Bhakar, Rohit & Wu, Jianzhong & Mathur, Jyotirmay, 2021. "A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems," Applied Energy, Elsevier, vol. 304(C).
    8. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    9. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Lisa Göransson, 2023. "Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe," Energies, MDPI, vol. 16(8), pages 1-27, April.
    11. James Amankwah Adu & Alberto Berizzi & Francesco Conte & Fabio D’Agostino & Valentin Ilea & Fabio Napolitano & Tadeo Pontecorvo & Andrea Vicario, 2022. "Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario," Energies, MDPI, vol. 15(10), pages 1-33, May.
    12. Biéron, M. & Le Dréau, J. & Haas, B., 2023. "Assessment of the marginal technologies reacting to demand response events: A French case-study," Energy, Elsevier, vol. 275(C).
    13. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    14. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    15. Huclin, Sébastien & Ramos, Andrés & Chaves, José Pablo & Matanza, Javier & González-Eguino, Mikel, 2023. "A methodological approach for assessing flexibility and capacity value in renewable-dominated power systems: A Spanish case study in 2030," Energy, Elsevier, vol. 285(C).
    16. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    17. Potenciano Menci, Sergio & Valarezo, Orlando, 2024. "Decoding design characteristics of local flexibility markets for congestion management with a multi-layered taxonomy," Applied Energy, Elsevier, vol. 357(C).
    18. Li, Peiquan & Zhao, Ziwen & Li, Jianling & Liu, Zhengguang & Liu, Yong & Mahmud, Md Apel & Sun, Yong & Chen, Diyi, 2023. "Unlocking potential contribution of seasonal pumped storage to ensure the flexibility of power systems with high proportion of renewable energy sources," Renewable Energy, Elsevier, vol. 218(C).
    19. Deng, Xu & Lv, Tao & Xu, Jie & Hou, Xiaoran & Liu, Feng, 2022. "Assessing the integration effect of inter-regional transmission on variable power generation under renewable energy consumption policy in China," Energy Policy, Elsevier, vol. 170(C).
    20. Neeraj Gupta & B Rajanarayan Prusty & Omar Alrumayh & Abdulaziz Almutairi & Talal Alharbi, 2022. "The Role of Transactive Energy in the Future Energy Industry: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2391-:d:1395868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.