IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p98-d1306309.html
   My bibliography  Save this article

Multi-Objective Short-Term Optimal Dispatching of Cascade Hydro–Wind–Solar–Thermal Hybrid Generation System with Pumped Storage Hydropower

Author

Listed:
  • Jie Li

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Linjun Shi

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Hao Fu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

Abstract

Aiming to mitigate the impact of power fluctuation caused by large-scale renewable energy integration, coupled with a high rate of wind and solar power abandonment, the multi-objective optimal dispatching of a cascade hydro–wind–solar–thermal hybrid generation system with pumped storage hydropower (PSH) is proposed in this paper. Based on the proposed system, the scheduling operation strategy takes into account the complex restrictions of cascade hydropower as well as the flexibility of the PSH. According to various scenarios, the NSGA-II approach is adopted to address the optimization problem, minimizing the system’s residual load variation and operation cost. The Pareto solution sets are contrasted and evaluated, applying the TOPSIS with CRITIC weighting. Additionally, the scheduling output of thermal power, cascade hydropower, and PSH is given in terms of different scenarios. The results demonstrate that the allocation of PSH to a hybrid energy system can significantly reduce the operation cost and the fluctuation in the residual load.

Suggested Citation

  • Jie Li & Linjun Shi & Hao Fu, 2023. "Multi-Objective Short-Term Optimal Dispatching of Cascade Hydro–Wind–Solar–Thermal Hybrid Generation System with Pumped Storage Hydropower," Energies, MDPI, vol. 17(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:98-:d:1306309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/98/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/98/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    2. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    3. Xianxun Wang & Yadong Mei & Hao Cai & Xiangyu Cong, 2016. "A New Fluctuation Index: Characteristics and Application to Hydro-Wind Systems," Energies, MDPI, vol. 9(2), pages 1-17, February.
    4. Gupta, Akshita & Kumar, Arun & Khatod, Dheeraj Kumar, 2019. "Optimized scheduling of hydropower with increase in solar and wind installations," Energy, Elsevier, vol. 183(C), pages 716-732.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    2. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    3. Su, Chengguo & Wang, Lingshuang & Sui, Quan & Wu, Huijun, 2025. "Optimal scheduling of a cascade hydro-thermal-wind power system integrating data centers and considering the spatiotemporal asynchronous transfer of energy resources," Applied Energy, Elsevier, vol. 377(PA).
    4. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    5. Lai, Chunyang & Kazemtabrizi, Behzad, 2024. "A novel data-driven tighten-constraint method for wind-hydro hybrid power system to improve day-ahead plan performance in real-time operation," Applied Energy, Elsevier, vol. 371(C).
    6. Newbery, David, 2023. "Wind, water and wires: Evaluating joint wind and interconnector capacity expansions in hydro-rich regions," Energy Economics, Elsevier, vol. 117(C).
    7. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    8. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    9. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    10. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    11. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    12. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    13. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    14. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    15. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    16. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    17. Jing Bai & Jiahui Wang & Jin Ran & Xingyuan Li & Chuang Tu, 2024. "An Improved Neural Network Algorithm for Energy Consumption Forecasting," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    18. Li, Xiao & Liu, Pan & Cheng, Lei & Cheng, Qian & Zhang, Wei & Xu, Shitian & Zheng, Yalian, 2023. "Strategic bidding for a hydro-wind-photovoltaic hybrid system considering the profit beyond forecast time," Renewable Energy, Elsevier, vol. 204(C), pages 277-289.
    19. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    20. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:98-:d:1306309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.