IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3575-d1128569.html
   My bibliography  Save this article

Decarbonization Measures: A Real Effect or Just a Declaration? An Assessment of Oil and Gas Companies’ Progress towards Carbon Neutrality

Author

Listed:
  • Alina Cherepovitsyna

    (Luzin Institute for Economic Studies—Subdivision of the Federal Research Centre, Kola Science Centre of the Russian Academy of Sciences, 24a, Fersmana ul., 184209 Apatity, Russia)

  • Nadezhda Sheveleva

    (Luzin Institute for Economic Studies—Subdivision of the Federal Research Centre, Kola Science Centre of the Russian Academy of Sciences, 24a, Fersmana ul., 184209 Apatity, Russia)

  • Arina Riadinskaia

    (Luzin Institute for Economic Studies—Subdivision of the Federal Research Centre, Kola Science Centre of the Russian Academy of Sciences, 24a, Fersmana ul., 184209 Apatity, Russia)

  • Konstantin Danilin

    (Luzin Institute for Economic Studies—Subdivision of the Federal Research Centre, Kola Science Centre of the Russian Academy of Sciences, 24a, Fersmana ul., 184209 Apatity, Russia)

Abstract

Efforts to control climate change with the aim of achieving carbon neutrality by 2050 have had the most significant impact on businesses operating in the energy sector, which produce large amounts of greenhouse gas (GHG) emissions. In light of such policies, oil and gas companies have set goals aimed at reducing GHG emissions and achieving carbon neutrality, but the issue remains open as to how such activities and progress towards these goals can be evaluated. This study attempts to assess the activities and progress of oil and gas companies towards carbon neutrality, with a focus on quantitative evaluation of goal achievement. First, an algorithm was developed for selecting global oil and gas companies for the analysis that reported their activities in 2022. Using this algorithm, a list of companies was compiled and their goals with regard to carbon neutrality were analyzed. Second, an assessment of how information is presented in corporate reports and which activities aimed at achieving carbon neutrality are reflected there was performed using the proposed checklist. Third, a method for evaluating the progress of oil and gas companies towards intermediate goals in the area of carbon neutrality was developed and tested. The method is based on assessing and comparing trends for oil and gas companies aiming to achieve intermediate goals in reducing carbon intensity. As a result, companies were classified into three categories: (1) those showing carbon neutrality achievement rates exceeding the expected average annual rates, (2) those with fixed carbon neutrality achievement rates below the expected average annual rates, and (3) those demonstrating no movement towards intermediate goals or a negative trend. The main methods used in this study included content analysis, checklist development, decomposition, critical and comparative analysis, and simple statistical methods.

Suggested Citation

  • Alina Cherepovitsyna & Nadezhda Sheveleva & Arina Riadinskaia & Konstantin Danilin, 2023. "Decarbonization Measures: A Real Effect or Just a Declaration? An Assessment of Oil and Gas Companies’ Progress towards Carbon Neutrality," Energies, MDPI, vol. 16(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3575-:d:1128569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khorasani, Mahnaz & Sarker, Sudipa & Kabir, Golam & Ali, Syed Mithun, 2022. "Evaluating strategies to decarbonize oil and gas supply chain: Implications for energy policies in emerging economies," Energy, Elsevier, vol. 258(C).
    2. Ausubel, Jesse H, 1995. "Technical progress and climatic change," Energy Policy, Elsevier, vol. 23(4-5), pages 411-416.
    3. Arash Farnoosh & Frederic Lantz, 2015. "Decarbonisation of electricity generation in an oil & gas producing country : "A sensitivity analysis over the power sector in Egypt"," Working Papers hal-02475491, HAL.
    4. Rida Waheed, 2022. "The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    5. Natalia Romasheva & Diana Dmitrieva, 2021. "Energy Resources Exploitation in the Russian Arctic: Challenges and Prospects for the Sustainable Development of the Ecosystem," Energies, MDPI, vol. 14(24), pages 1-31, December.
    6. Mei Li & Gregory Trencher & Jusen Asuka, 2022. "The clean energy claims of BP, Chevron, ExxonMobil and Shell: A mismatch between discourse, actions and investments," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-27, February.
    7. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    8. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    2. Alexey Cherepovitsyn & Aleksei Kazanin & Evgeniya Rutenko, 2023. "Strategic Priorities for Green Diversification of Oil and Gas Companies," Energies, MDPI, vol. 16(13), pages 1-17, June.
    3. Natalya Romasheva & Alina Cherepovitsyna, 2023. "Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    4. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    5. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    6. J. Doyne Farmer & John Geanakoplos & Matteo G. Richiardi & Miquel Montero & Josep Perelló & Jaume Masoliver, 2024. "Discounting the Distant Future: What Do Historical Bond Prices Imply about the Long-Term Discount Rate?," Mathematics, MDPI, vol. 12(5), pages 1-25, February.
    7. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    8. N. Thangaiyarkarasi & S. Vanitha, 2021. "The Impact of Financial Development on Decarbonization Factors of Carbon Emissions: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 353-364.
    9. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    10. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    11. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    12. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    13. Anna Misztal & Magdalena Kowalska & Anita Fajczak-Kowalska & Otakar Strunecky, 2021. "Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization," Energies, MDPI, vol. 14(16), pages 1-18, August.
    14. Casper Boongaling Agaton, 2022. "Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines from a Real Options Perspective," Resources, MDPI, vol. 11(6), pages 1-17, June.
    15. Minghan Sun & Yiwei Jia & Jian Wei & Jewel X. Zhu, 2023. "Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns," Energies, MDPI, vol. 16(6), pages 1-18, March.
    16. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    17. Sheinbaum, Claudia & Ruíz, Belizza J. & Ozawa, Leticia, 2011. "Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives," Energy, Elsevier, vol. 36(6), pages 3629-3638.
    18. Souhankar, Amirhossein & Mortezaee, Ahmad & Hafezi, Reza, 2023. "Potentials for energy-saving and efficiency capacities in Iran: An interpretive structural model to prioritize future national policies," Energy, Elsevier, vol. 262(PB).
    19. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).
    20. Aleksandra Komorowska, 2021. "Can Decarbonisation and Capacity Market Go Together? The Case Study of Poland," Energies, MDPI, vol. 14(16), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3575-:d:1128569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.