IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2774-d1099548.html
   My bibliography  Save this article

Comparison of Power Coefficients in Wind Turbines Considering the Tip Speed Ratio and Blade Pitch Angle

Author

Listed:
  • Oscar Carranza Castillo

    (Instituto Politécnico Nacional, Escuela Superior de Cómputo, Av. Juan de Bátiz s/n, Ciudad de Mexico 07838, Mexico
    Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Av. Luis Enrique Erro s/n, Ciudad de Mexico 07738, Mexico)

  • Viviana Reyes Andrade

    (Instituto Tecnológico de Puebla, Departamento de Eléctrica Electrónica, Tecnológico Nacional de México, Av. Tecnológico 420, Puebla 72220, Mexico)

  • Jaime José Rodríguez Rivas

    (Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Av. Luis Enrique Erro s/n, Ciudad de Mexico 07738, Mexico)

  • Rubén Ortega González

    (Instituto Politécnico Nacional, Escuela Superior de Cómputo, Av. Juan de Bátiz s/n, Ciudad de Mexico 07838, Mexico
    Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Av. Luis Enrique Erro s/n, Ciudad de Mexico 07738, Mexico)

Abstract

This paper presents a review of the power and torque coefficients of various wind generation systems, which involve the real characteristics of the wind turbine as a function of the generated power. The coefficients are described by mathematical functions that depend on the trip speed ratio and blade pitch angle of the wind turbines. These mathematical functions are based on polynomial, sinusoidal, and exponential equations. Once the mathematical functions have been described, an analysis of the grouped coefficients according to their function is performed with the purpose of considering the variations in the trip speed ratio for all the coefficients based on sinusoidal and exponential functions, and with the variations in the blade pitch angle. This analysis allows us to determine the different coefficients of power and torque used in wind generation systems, with the objective of developing algorithms for searching for the point of maximum power generated and for the active control of wind turbines with variations in the blade pitch angle.

Suggested Citation

  • Oscar Carranza Castillo & Viviana Reyes Andrade & Jaime José Rodríguez Rivas & Rubén Ortega González, 2023. "Comparison of Power Coefficients in Wind Turbines Considering the Tip Speed Ratio and Blade Pitch Angle," Energies, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2774-:d:1099548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Niu, Briana & Hwangbo, Hoon & Zeng, Li & Ding, Yu, 2018. "Evaluation of alternative power production efficiency metrics for offshore wind turbines and farms," Renewable Energy, Elsevier, vol. 128(PA), pages 81-90.
    3. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    4. González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
    5. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jimiao Zhang & Jie Li, 2024. "Hybrid Deloading Control Strategy in MMC-Based Wind Energy Conversion Systems for Enhanced Frequency Regulation," Energies, MDPI, vol. 17(5), pages 1-22, March.
    2. Wiesław Łyskawiński & Krzysztof Kowalski & Rafał M. Wojciechowski, 2024. "Experimental Assessment of Suitability of Darrieus and Savonius Turbines for Obtaining Wind Energy from Passing Vehicles," Energies, MDPI, vol. 17(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    2. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    3. Armenia Androniceanu & Irina Georgescu & Ionuț Nica & Nora Chiriță, 2023. "A Comprehensive Analysis of Renewable Energy Based on Integrating Economic Cybernetics and the Autoregressive Distributed Lag Model—The Case of Romania," Energies, MDPI, vol. 16(16), pages 1-28, August.
    4. Armenia Androniceanu & Irina Georgescu, 2023. "The Impact of CO 2 Emissions and Energy Consumption on Economic Growth: A Panel Data Analysis," Energies, MDPI, vol. 16(3), pages 1-17, January.
    5. Ding, Yu & Kumar, Nitesh & Prakash, Abhinav & Kio, Adaiyibo E. & Liu, Xin & Liu, Lei & Li, Qingchang, 2021. "A case study of space-time performance comparison of wind turbines on a wind farm," Renewable Energy, Elsevier, vol. 171(C), pages 735-746.
    6. Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
    7. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
    8. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Emmanuel Tanyi, 2023. "Optimal Design and Mathematical Modeling of Hybrid Solar PV–Biogas Generator with Energy Storage Power Generation System in Multi-Objective Function Cases," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    9. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    10. Zhang, Mengjie & Wu, Qin & Wang, Guoyu & Huang, Biao & Fu, Xiaoying & Chen, Jie, 2020. "The flow regime and hydrodynamic performance for a pitching hydrofoil," Renewable Energy, Elsevier, vol. 150(C), pages 412-427.
    11. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    12. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    13. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    14. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    15. Sergio Nogales-Delgado & Agustina Guiberteau Cabanillas & Juan Pedro Moro & José María Encinar Martín, 2023. "Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation," Clean Technol., MDPI, vol. 5(2), pages 1-15, May.
    16. Camblong, H. & Nourdine, S. & Vechiu, I. & Tapia, G., 2012. "Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation," Energy, Elsevier, vol. 48(1), pages 284-291.
    17. Łukasz Jarosław Kozar & Adam Sulich, 2023. "Energy Sector’s Green Transformation towards Sustainable Development: A Review and Future Directions," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    18. Jaramillo-Lopez, Fernando & Kenne, Godpromesse & Lamnabhi-Lagarrigue, Francoise, 2016. "A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction," Renewable Energy, Elsevier, vol. 86(C), pages 38-48.
    19. Roghayyeh Pourebrahim & Amin Mohammadpour Shotorbani & Fausto Pedro García Márquez & Sajjad Tohidi & Behnam Mohammadi-Ivatloo, 2021. "Robust Control of a PMSG-Based Wind Turbine Generator Using Lyapunov Function," Energies, MDPI, vol. 14(6), pages 1-22, March.
    20. Yanhui Qiao & Yongqian Liu & Yang Chen & Shuang Han & Luo Wang, 2022. "Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences," Energies, MDPI, vol. 15(5), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2774-:d:1099548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.