IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2231-d1080302.html
   My bibliography  Save this article

A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites

Author

Listed:
  • Tae Hoon Kim

    (R&D Center, SugarEn Co., Ltd., Yongin 16890, Gyeonggi-do, Republic of Korea)

  • Seung Hyeon Park

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea)

  • Seoku Lee

    (Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA)

  • A.V.S.L. Sai Bharadwaj

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea)

  • Yang Soo Lee

    (Samwon Industrial Co., Ltd., Ansan 15612, Gyeonggi-do, Republic of Korea)

  • Chang Geun Yoo

    (Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA)

  • Tae Hyun Kim

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea
    Namu BioChem Inc., Ansan 15588, Gyeonggi-do, Republic of Korea)

Abstract

The adverse effects of UV (ultraviolet) radiation on polymeric materials and organic constituents can damage the molecular structure of human skin and polymeric materials, resulting in their degradation. Therefore, additives or reagents for UV-shielding must be used in related applications, including polymer compounds and skin cosmetics. Bio-based polymers have shown great potential as alternatives to conventional metallic and organic materials (e.g., TiO 2 and ZnO) in various applications; therefore, natural products have gained attention as a potential resource to overcome UV-induced health and environmental problems. In particular, biomass-derived materials such as lignin, fiber, and silica have been investigated as UV-shielding materials owing to their biocompatibility, biodegradability, and low carbon emissions. In this review, the UV-shielding effect and potential of various biomass-derived materials, such as silica, nanocellulose, and fibers, are reviewed. Among them, lignin is considered a promising UV-shielding material because of the presence of chromophores and functional groups capable of absorbing UV radiation of all ranges.

Suggested Citation

  • Tae Hoon Kim & Seung Hyeon Park & Seoku Lee & A.V.S.L. Sai Bharadwaj & Yang Soo Lee & Chang Geun Yoo & Tae Hyun Kim, 2023. "A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites," Energies, MDPI, vol. 16(5), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2231-:d:1080302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artem A. Medvedev & Daria A. Beldova & Konstantin B. Kalmykov & Alexey V. Kravtsov & Marina A. Tedeeva & Leonid M. Kustov & Sergey F. Dunaev & Alexander L. Kustov, 2022. "Carbon Dioxide Assisted Conversion of Hydrolysis Lignin Catalyzed by Nickel Compounds," Energies, MDPI, vol. 15(18), pages 1-12, September.
    2. Mayank Patel & Nick Hill & Charles A. Mullen & Sampath Gunukula & William J. DeSisto, 2020. "Fast Pyrolysis of Lignin Pretreated with Magnesium Formate and Magnesium Hydroxide," Energies, MDPI, vol. 13(19), pages 1-10, September.
    3. Djukić-Vuković, A. & Mladenović, D. & Ivanović, J. & Pejin, J. & Mojović, L., 2019. "Towards sustainability of lactic acid and poly-lactic acid polymers production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 238-252.
    4. Isa Hasanov & Merlin Raud & Timo Kikas, 2020. "The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass," Energies, MDPI, vol. 13(18), pages 1-24, September.
    5. Wang, Shaoqing & Li, Zhihe & Yi, Weiming & Fu, Peng & Zhang, Andong & Bai, Xueyuan, 2021. "Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour," Renewable Energy, Elsevier, vol. 163(C), pages 1673-1681.
    6. Alexandr Arshanitsa & Lilija Jashina & Matiss Pals & Jevgenija Ponomarenko & Yegor Akishin & Maja Zake, 2022. "Characteristics of the Main- and Side-Stream Products of Microwave Assisted Torrefaction of Lignocellulosic Biomass of Different Origination," Energies, MDPI, vol. 15(5), pages 1-20, March.
    7. Park, Gwon Woo & Gong, Gyeongtaek & Joo, Jeong Chan & Song, Jinju & Lee, Jiye & Lee, Joon-Pyo & Kim, Hee Taek & Ryu, Mi Hee & Sirohi, Ranjna & Zhuang, Xinshu & Min, Kyoungseon, 2022. "Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Sharib Khan & Kait Kaarel Puss & Tiit Lukk & Mart Loog & Timo Kikas & Siim Salmar, 2022. "Enzymatic Conversion of Hydrolysis Lignin—A Potential Biorefinery Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    9. Ahn, Byeongchan & Park, Chulhwan & Liu, J. Jay & Ok, Yong Sik & Won, Wangyun, 2023. "Maximizing the utilization of lignocellulosic biomass: Process development and analysis," Renewable Energy, Elsevier, vol. 215(C).
    10. Hegne Pupart & Piia Jõul & Melissa Ingela Bramanis & Tiit Lukk, 2023. "Characterization of the Ensemble of Lignin-Remodeling DyP-Type Peroxidases from Streptomyces coelicolor A3(2)," Energies, MDPI, vol. 16(3), pages 1-15, February.
    11. Abraham Castro Garcia & Shuo Cheng & Jeffrey S. Cross, 2022. "Lignin Gasification: Current and Future Viability," Energies, MDPI, vol. 15(23), pages 1-17, November.
    12. Wang, Bin & Wang, Shuang-Fei & Lam, Su Shiung & Sonne, Christian & Yuan, Tong-Qi & Song, Guo-Yong & Sun, Run-Cang, 2020. "A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2231-:d:1080302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.