IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019327.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Transformation of organosolv lignin into sustainable aromatics: Catalytic hydrodeoxygenation using carbon-supported bimetallic MoRu catalyst

Author

Listed:
  • Tymchyshyn, Matthew
  • Niu, Chunyao
  • Rezayan, Armin
  • Zhang, Yongsheng
  • Xu, Chunbao

Abstract

While lignin holds potential as a sustainable source for fuels and chemicals, it faces hurdles due to its large molecular size, low heating values, and high oxygen content. In this study, the reductive depolymerization of organosolv lignin was investigated using mono-/bimetallic carbon-supported catalysts. At 340 °C, the MoRu/AC catalyst significantly reduced organosolv lignin feed's molecular weight from 2600 to 460 g/mol, yielding ∼70 % depolymerized organosolv lignin with a higher heating value of 32.92 MJ/kg, mainly composed of substituted phenolic compounds/aromatic hydrocarbons. Conversely, the MoRu/ACP catalyst underperformed, possibly due to residual acidity triggering undesirable side reactions like condensation. Thorough investigations revealed that introducing Mo into Ru catalysts significantly influences the hydrodeoxygenation process, resulting in H/C and O/C ratios of 1.29 and 0.20, contrasting with the initial feed's 1.05 and 0.35 ratios. Furthermore, density functional theory calculations showed lower energy barriers for breaking Caryl−OH/Caryl−O* bonds in guaiacol, a model compound, due to MoRu interactions, implying a promising deoxygenation potential for organosolv lignin transformation. The successful production of high-value bio-oil from technical lignin using the MoRu catalyst showcases its potential to pave the way toward carbon neutrality by offering eco-friendly alternatives to traditional fossil fuels and chemicals.

Suggested Citation

  • Tymchyshyn, Matthew & Niu, Chunyao & Rezayan, Armin & Zhang, Yongsheng & Xu, Chunbao, 2024. "Transformation of organosolv lignin into sustainable aromatics: Catalytic hydrodeoxygenation using carbon-supported bimetallic MoRu catalyst," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019327
    DOI: 10.1016/j.energy.2024.132158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.