IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2218-d1079966.html
   My bibliography  Save this article

Two-Outputs Nonlinear Grey Box Model for Lithium-Ion Batteries

Author

Listed:
  • Cynthia Thamires da Silva

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, São Paulo 05508-010, Brazil)

  • Bruno Martin de Alcântara Dias

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, São Paulo 05508-010, Brazil)

  • Rui Esteves Araújo

    (INESC TEC and Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Eduardo Lorenzetti Pellini

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, São Paulo 05508-010, Brazil)

  • Armando Antônio Maria Laganá

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, São Paulo 05508-010, Brazil)

Abstract

Storing energy efficiently is one of the main factors of a more sustainable world. The battey management system in energy storage plays an extremely important role in ensuring these systems’ efficiency, safety, and performance. This battery management system is capable of estimating the battery states, which are used to give better efficiency, a long life cycle, and safety. However, these states cannot be measured directly and must be estimated indirectly using battery models. Therefore, accurate battery models are essential for battery management systems implementation. One of these models is the nonlinear grey box model, which is easy to implement in embedded systems and has good accuracy when used with a good parameter identification method. Regarding the parameter identification methods, the nonlinear least square optimization is the most used method. However, to have accurate results, it is necessary to define the system’s initial states, which is not an easy task. This paper presents a two-outputs nonlinear grey box battery model. The first output is the battery voltage, and the second output is the battery state of charge. The second output was added to improve the system’s initial states identification and consequently improve the identified parameter accuracy. The model was estimated with the best experiment design, which was defined considering a comparison between seven different experiment designs regarding the fit to validation data, the parameter standard deviation, and the output variance. This paper also presents a method for defining a weight between the outputs, considering a greater weight in the output with greater model confidence. With this approach, it was possible to reach a value 1000 times smaller in the parameter standard deviation with a non-biased and little model prediction error when compared to the commonly used one-output nonlinear grey box model.

Suggested Citation

  • Cynthia Thamires da Silva & Bruno Martin de Alcântara Dias & Rui Esteves Araújo & Eduardo Lorenzetti Pellini & Armando Antônio Maria Laganá, 2023. "Two-Outputs Nonlinear Grey Box Model for Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2218-:d:1079966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng, Jiankun & Luo, Jiayi & He, Hongwen & Lu, Bing, 2019. "An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Cynthia Thamires da Silva & Bruno Martin de Alcântara Dias & Rui Esteves Araújo & Eduardo Lorenzetti Pellini & Armando Antônio Maria Laganá, 2021. "Battery Model Identification Approach for Electric Forklift Application," Energies, MDPI, vol. 14(19), pages 1-26, September.
    3. Xiangdong Sun & Jingrun Ji & Biying Ren & Chenxue Xie & Dan Yan, 2019. "Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Chao-Yang Wang & Teng Liu & Xiao-Guang Yang & Shanhai Ge & Nathaniel V. Stanley & Eric S. Rountree & Yongjun Leng & Brian D. McCarthy, 2022. "Fast charging of energy-dense lithium-ion batteries," Nature, Nature, vol. 611(7936), pages 485-490, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    2. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    3. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    4. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    5. Xinfeng Zhang & Xiangjun Li & Kaikai Yang & Zhongyi Wang, 2023. "Lithium-Ion Battery Modeling and State of Charge Prediction Based on Fractional-Order Calculus," Mathematics, MDPI, vol. 11(15), pages 1-15, August.
    6. Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
    7. Xin Lai & Ming Yuan & Xiaopeng Tang & Yi Yao & Jiahui Weng & Furong Gao & Weiguo Ma & Yuejiu Zheng, 2022. "Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing," Energies, MDPI, vol. 15(19), pages 1-20, October.
    8. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    9. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    10. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
    11. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    13. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    14. Lluís Trilla & Lluc Canals Casals & Jordi Jacas & Pol Paradell, 2022. "Dual Extended Kalman Filter for State of Charge Estimation of Lithium–Sulfur Batteries," Energies, MDPI, vol. 15(19), pages 1-14, September.
    15. Luis Alberto Cantera-Cantera & Cristóbal Vargas-Jarillo & Sergio Isaí Palomino-Reséndiz & Yair Lozano-Hernández & Carlos Manuel Montelongo-Vázquez, 2022. "A Polynomial Fitting Problem: The Orthogonal Distances Method," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    16. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    17. Gao, Xinlei & Li, Yalun & Wang, Huizhi & Liu, Xinhua & Wu, Yu & Yang, Shichun & Zhao, Zhengming & Ouyang, Minggao, 2023. "Probing inhomogeneity of electrical-thermal distribution on electrode during fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).
    18. Zheng Chen & Jiapeng Xiao & Xing Shu & Shiquan Shen & Jiangwei Shen & Yonggang Liu, 2020. "Model-Based Adaptive Joint Estimation of the State of Charge and Capacity for Lithium–Ion Batteries in Their Entire Lifespan," Energies, MDPI, vol. 13(6), pages 1-15, March.
    19. Zeeshan Ahmad Khan & Prashant Shrivastava & Syed Muhammad Amrr & Saad Mekhilef & Abdullah A. Algethami & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    20. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2218-:d:1079966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.