IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61461-2.html
   My bibliography  Save this article

Enhanced specific energy in fast-charging lithium-ion batteries negative electrodes via Ti-O covalency-mediated low potential

Author

Listed:
  • Jun Huang

    (Shanghai Jiao Tong University)

  • Qirui Yang

    (Shanghai Jiao Tong University)

  • Anyi Hu

    (Shanghai Jiao Tong University)

  • Zhu Liao

    (Shanghai Jiao Tong University)

  • Zhengxi Zhang

    (Shanghai Jiao Tong University)

  • Qinfeng Zheng

    (Shanghai Jiao Tong University)

  • Zhouhong Ren

    (Shanghai Jiao Tong University)

  • Shun Zheng

    (Shanghai Jiao Tong University)

  • Yixiao Zhang

    (Shanghai Jiao Tong University)

  • Xiaolong Yang

    (Chongqing University)

  • Zhenming Xu

    (Nanjing University of Aeronautics and Astronautics)

  • Le Zhang

    (The University of Texas at Austin)

  • Daming Zhu

    (Chinese Academy of Sciences)

  • Wen Wen

    (Chinese Academy of Sciences)

  • Xi Liu

    (Shanghai Jiao Tong University)

  • Akihiro Orita

    (Ltd)

  • Nagahiro Saito

    (Nagoya University)

  • Liguang Wang

    (Zhejiang University)

  • Yongyao Xia

    (Nanjing University of Aeronautics and Astronautics
    Fudan University)

  • Liwei Chen

    (Shanghai Jiao Tong University
    Chinese Academy of Sciences)

  • Jun Lu

    (Zhejiang University)

  • Li Yang

    (Shanghai Jiao Tong University)

Abstract

Developing lithium-ion batteries with high specific energy and fast-charging capability requires overcoming the potential-capacity trade-off in negative electrodes. Conventional fast-charging materials (e.g., Li4Ti5O12, TiNb2O7) operate at high potentials (>1.5 V vs. Li+/Li) to circumvent lithium plating, yet this compromises specific energy. A viable strategy for enhancing the specific energy is to reduce the potential while avoiding the lithium plating risk; however, the underlying mechanisms remain unclear. Here we demonstrate that enhancing Titanium-Oxygen covalency through pseudo-Jahn-Teller Effect distortion in Ruddlesden-Popper perovskites enables low-potential operation. The Li2La2Ti3O10 negative electrode exhibits a working potential of 0.5 V vs. Li+/Li with initial 139.3 mAh g−1 at 5 A g−1 and 72.9% capacity retention after 5000 cycles. Full cells with LiNi0.8Co0.1Mn0.1O2 positive electrodes deliver 3.45 V average discharge voltage-50% higher than conventional Li4Ti5O12 | |LiNi0.8Co0.1Mn0.1O2 systems-achieving 100 mAh g−1 at 4 A g−1. Mechanistic analysis reveals low Li⁺ migration barriers and stable Ruddlesden-Popper perovskite frameworks enable rapid ion transport.

Suggested Citation

  • Jun Huang & Qirui Yang & Anyi Hu & Zhu Liao & Zhengxi Zhang & Qinfeng Zheng & Zhouhong Ren & Shun Zheng & Yixiao Zhang & Xiaolong Yang & Zhenming Xu & Le Zhang & Daming Zhu & Wen Wen & Xi Liu & Akihir, 2025. "Enhanced specific energy in fast-charging lithium-ion batteries negative electrodes via Ti-O covalency-mediated low potential," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61461-2
    DOI: 10.1038/s41467-025-61461-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61461-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61461-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu Zhang & Xiaohua Zhang & Guiying Tian & Qinghua Zhang & Michael Knapp & Helmut Ehrenberg & Gang Chen & Zexiang Shen & Guochun Yang & Lin Gu & Fei Du, 2020. "Lithium lanthanum titanate perovskite as an anode for lithium ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Michael M. Thackeray & Khalil Amine, 2021. "Li4Ti5O12 spinel anodes," Nature Energy, Nature, vol. 6(6), pages 683-683, June.
    3. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    4. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    5. Kent J. Griffith & Kamila M. Wiaderek & Giannantonio Cibin & Lauren E. Marbella & Clare P. Grey, 2018. "Niobium tungsten oxides for high-rate lithium-ion energy storage," Nature, Nature, vol. 559(7715), pages 556-563, July.
    6. Chao-Yang Wang & Teng Liu & Xiao-Guang Yang & Shanhai Ge & Nathaniel V. Stanley & Eric S. Rountree & Yongjun Leng & Brian D. McCarthy, 2022. "Fast charging of energy-dense lithium-ion batteries," Nature, Nature, vol. 611(7936), pages 485-490, November.
    7. Haodong Liu & Zhuoying Zhu & Qizhang Yan & Sicen Yu & Xin He & Yan Chen & Rui Zhang & Lu Ma & Tongchao Liu & Matthew Li & Ruoqian Lin & Yiming Chen & Yejing Li & Xing Xing & Yoonjung Choi & Lucy Gao &, 2020. "A disordered rock salt anode for fast-charging lithium-ion batteries," Nature, Nature, vol. 585(7823), pages 63-67, September.
    8. Yan Zhang & Yingjie Wang & Wei Zhao & Pengjian Zuo & Yujin Tong & Geping Yin & Tong Zhu & Shuaifeng Lou, 2024. "Delocalized electronic engineering of TiNb2O7 enables low temperature capability for high-areal-capacity lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hanwei & Alujjage, Anuththara S. & Terese, Maria & Fear, Conner & Joshi, Tapesh & Rikka, Vallabha Rao & Jeevarajan, Judith A. & Mukherjee, Partha P., 2025. "Effect of fast charging on degradation and safety characteristics of lithium-ion batteries with LiFePO4 cathodes," Applied Energy, Elsevier, vol. 377(PA).
    2. Yanchen Liu & Ana Guilherme Buzanich & Luciano A. Montoro & Hao Liu & Ye Liu & Franziska Emmerling & Patrícia A. Russo & Nicola Pinna, 2025. "A partially disordered crystallographic shear block structure as fast-charging negative electrode material for lithium-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Yaqing Guo & Chi Guo & Penghui Li & Wenjun Song & Weiyuan Huang & Junxin Yan & Xiaobin Liao & Kun He & Wuxin Sha & Xuemei Zeng & Xinyue Tang & QingQing Ren & Shun Wang & Khalil Amine & Anmin Nie & Ton, 2025. "Improving the fast-charging capability of NbWO-based Li-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    5. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Nobuhiro Ogihara & Masaki Hasegawa & Hitoshi Kumagai & Riho Mikita & Naoyuki Nagasako, 2023. "Heterogeneous intercalated metal-organic framework active materials for fast-charging non-aqueous Li-ion capacitors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Minsung Baek & Jinyoung Kim & Jaegyu Jin & Jang Wook Choi, 2021. "Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Yuanyuan Zhang & Xiaohua Zhang & Quanquan Pang & Jianhua Yan, 2023. "Control of metal oxides’ electronic conductivity through visual intercalation chemical reactions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Weihao Zeng & Fanjie Xia & Juan Wang & Jinlong Yang & Haoyang Peng & Wei Shu & Quan Li & Hong Wang & Guan Wang & Shichun Mu & Jinsong Wu, 2024. "Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Hong Zhao & Li Wang & Zonghai Chen & Xiangming He, 2019. "Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review," Energies, MDPI, vol. 12(20), pages 1-23, October.
    12. Lishun Bai & Yan Xu & Yue Liu & Danni Zhang & Shibin Zhang & Wujie Yang & Zhi Chang & Haoshen Zhou, 2025. "Metal-organic framework glass stabilizes high-voltage cathodes for efficient lithium-metal batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    14. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    15. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    16. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    17. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    18. Zhao, Bin, 2017. "Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?," Energy Policy, Elsevier, vol. 108(C), pages 712-714.
    19. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61461-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.