IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7823d10.1038_s41586-020-2637-6.html
   My bibliography  Save this article

A disordered rock salt anode for fast-charging lithium-ion batteries

Author

Listed:
  • Haodong Liu

    (University of California, San Diego)

  • Zhuoying Zhu

    (University of California, San Diego)

  • Qizhang Yan

    (University of California, San Diego)

  • Sicen Yu

    (University of California, San Diego)

  • Xin He

    (Lawrence Berkeley National Laboratory)

  • Yan Chen

    (Oak Ridge National Laboratory)

  • Rui Zhang

    (University of California, Irvine)

  • Lu Ma

    (Brookhaven National Laboratory)

  • Tongchao Liu

    (Argonne National Laboratory)

  • Matthew Li

    (Argonne National Laboratory)

  • Ruoqian Lin

    (Brookhaven National Laboratory)

  • Yiming Chen

    (University of California, San Diego)

  • Yejing Li

    (University of California, San Diego)

  • Xing Xing

    (University of California, San Diego)

  • Yoonjung Choi

    (University of California, San Diego)

  • Lucy Gao

    (Del Norte High School)

  • Helen Sung-yun Cho

    (Canyon Crest Academy)

  • Ke An

    (Oak Ridge National Laboratory)

  • Jun Feng

    (Lawrence Berkeley National Laboratory)

  • Robert Kostecki

    (Lawrence Berkeley National Laboratory)

  • Khalil Amine

    (Argonne National Laboratory)

  • Tianpin Wu

    (Argonne National Laboratory)

  • Jun Lu

    (Argonne National Laboratory)

  • Huolin L. Xin

    (University of California, Irvine)

  • Shyue Ping Ong

    (University of California, San Diego
    University of California, San Diego)

  • Ping Liu

    (University of California, San Diego
    University of California, San Diego)

Abstract

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1–3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

Suggested Citation

  • Haodong Liu & Zhuoying Zhu & Qizhang Yan & Sicen Yu & Xin He & Yan Chen & Rui Zhang & Lu Ma & Tongchao Liu & Matthew Li & Ruoqian Lin & Yiming Chen & Yejing Li & Xing Xing & Yoonjung Choi & Lucy Gao &, 2020. "A disordered rock salt anode for fast-charging lithium-ion batteries," Nature, Nature, vol. 585(7823), pages 63-67, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7823:d:10.1038_s41586-020-2637-6
    DOI: 10.1038/s41586-020-2637-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2637-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2637-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yuanyuan Zhang & Xiaohua Zhang & Quanquan Pang & Jianhua Yan, 2023. "Control of metal oxides’ electronic conductivity through visual intercalation chemical reactions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Annika Ahlberg Tidblad & Kristina Edström & Guiomar Hernández & Iratxe de Meatza & Imanol Landa-Medrano & Jordi Jacas Biendicho & Lluís Trilla & Maarten Buysse & Marcos Ierides & Beatriz Perez Horno &, 2021. "Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective," Energies, MDPI, vol. 14(14), pages 1-26, July.
    6. Gang Sun & Fu-Da Yu & Mi Lu & Qingjun Zhu & Yunshan Jiang & Yongzhi Mao & John A. McLeod & Jason Maley & Jian Wang & Jigang Zhou & Zhenbo Wang, 2022. "Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7823:d:10.1038_s41586-020-2637-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.