IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1585-d1058137.html
   My bibliography  Save this article

Multi-Objective Optimization of a Solar Combined Power Generation and Multi-Cooling System Using CO 2 as a Refrigerant

Author

Listed:
  • Rania Hammemi

    (Research Laboratory Energetic and Environment, National Engineering School of Tunis (ENIT), Tunis El Manar University, Tunis 1002, Tunisia)

  • Mouna Elakhdar

    (Research Laboratory Energetic and Environment, National Engineering School of Tunis (ENIT), Tunis El Manar University, Tunis 1002, Tunisia)

  • Bourhan Tashtoush

    (Mechanical Engineering Department, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan)

  • Ezzedine Nehdi

    (Research Laboratory Energetic and Environment, National Engineering School of Tunis (ENIT), Tunis El Manar University, Tunis 1002, Tunisia)

Abstract

This paper proposes a new combined multi-cooling and power generation system (CMCP) driven by solar energy. Carbon dioxide is used as a refrigerant. A parabolic trough collector (PTC) is employed to collect solar radiation and convert it into thermal energy. The system includes a supercritical CO 2 power system for power production and an ejector refrigeration system with two ejectors to provide cooling at two different evaporating temperatures. The CMCP system is simulated hourly with weather conditions for Tunisia. The PTC mathematical model is used to calculate the heat transfer fluid outlet temperature and the performance of the CMCP system on a specific day of the year. A 1D model of an ejector with a constant area is adopted to evaluate the ejector performance. The system’s performance is evaluated by an energetic and exergetic analysis. The importance of the system’s components is determined by an exergoeconomic analysis. The system is modeled using MATLAB software. A genetic algorithm is used for multi-objective optimization to determine the best values and solutions for the system’s design parameters. The optimal energy and exergy efficiencies were found to be 13.7 percent and 37.55 percent, respectively, and the total product unit cost was 31.15 USD/GJ.

Suggested Citation

  • Rania Hammemi & Mouna Elakhdar & Bourhan Tashtoush & Ezzedine Nehdi, 2023. "Multi-Objective Optimization of a Solar Combined Power Generation and Multi-Cooling System Using CO 2 as a Refrigerant," Energies, MDPI, vol. 16(4), pages 1-34, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1585-:d:1058137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elakhdar, M. & Tashtoush, B.M. & Nehdi, E. & Kairouani, L., 2018. "Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle," Energy, Elsevier, vol. 163(C), pages 1217-1230.
    2. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    3. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    4. Wang, Jiangfeng & Zhao, Pan & Niu, Xiaoqiang & Dai, Yiping, 2012. "Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy," Applied Energy, Elsevier, vol. 94(C), pages 58-64.
    5. Yin, Jiqiang & Yu, Zeting & Zhang, Chenghui & Tian, Minli & Han, Jitian, 2018. "Thermodynamic analysis of a novel combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 156(C), pages 319-327.
    6. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    7. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems," Energy, Elsevier, vol. 124(C), pages 752-771.
    8. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    9. Liu, Zhan & Liu, Zihui & Cao, Xing & Li, Hailong & Yang, Xiaohu, 2020. "Self-condensing transcritical CO2 cogeneration system with extraction turbine and ejector refrigeration cycle: A techno-economic assessment study," Energy, Elsevier, vol. 208(C).
    10. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    11. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Deng, Shuai, 2018. "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 95-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    2. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    3. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    4. Serafino, Aldo & Obert, Benoit & Vergé, Léa & Cinnella, Paola, 2020. "Robust optimization of an organic Rankine cycle for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 1120-1129.
    5. Wu, Dan & Aye, Lu & Ngo, Tuan & Mendis, Priyan, 2017. "Optimisation and financial analysis of an organic Rankine cycle cooling system driven by facade integrated solar collectors," Applied Energy, Elsevier, vol. 185(P1), pages 172-182.
    6. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    7. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    8. Savvas L. Douvartzides & Aristidis Tsiolikas & Nikolaos D. Charisiou & Manolis Souliotis & Vayos Karayannis & Nikolaos Taousanidis, 2022. "Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants," Energies, MDPI, vol. 15(15), pages 1-26, July.
    9. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    10. Hai, Tao & Ashraf Ali, Masood & Alizadeh, As'ad & Sharma, Aman & Sayed Mohammed Metwally, Ahmed & Ullah, Mirzat & Tavasoli, Masoumeh, 2023. "Enhancing the performance of a Novel multigeneration system with electricity, heating, cooling, and freshwater products using genetic algorithm optimization and analysis of energy, exergy, and entrans," Renewable Energy, Elsevier, vol. 209(C), pages 184-205.
    11. Nord, Lars O. & Martelli, Emanuele & Bolland, Olav, 2014. "Weight and power optimization of steam bottoming cycle for offshore oil and gas installations," Energy, Elsevier, vol. 76(C), pages 891-898.
    12. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    13. Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
    14. Ningjian Peng & Enhua Wang & Hongguang Zhang, 2021. "Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Cataldo, Filippo & Mastrullo, Rita & Mauro, Alfonso William & Vanoli, Giuseppe Peter, 2014. "Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization," Energy, Elsevier, vol. 72(C), pages 159-167.
    16. Jin, Yunli & Gao, Naiping & Wang, Tiantian, 2020. "Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 207(C).
    17. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    18. Cai, Jinwen & Shu, Gequn & Tian, Hua & Wang, Xuan & Wang, Rui & Shi, Xiaolei, 2020. "Validation and analysis of organic Rankine cycle dynamic model using zeotropic mixture," Energy, Elsevier, vol. 197(C).
    19. Geng, Donghan & Gao, Xiangjie, 2023. "Thermodynamic and exergoeconomic optimization of a novel cooling, desalination and power multigeneration system based on ocean thermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 17-39.
    20. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1585-:d:1058137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.