IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1392-d1051695.html
   My bibliography  Save this article

Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends

Author

Listed:
  • Hai Wang

    (Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Shengnan Chen

    (Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

Abstract

In the past few decades, the machine learning (or data-driven) approach has been broadly adopted as an alternative to scientific discovery, resulting in many opportunities and challenges. In the oil and gas sector, subsurface reservoirs are heterogeneous porous media involving a large number of complex phenomena, making their characterization and dynamic prediction a real challenge. This study provides a comprehensive overview of recent research that has employed machine learning in three key areas: reservoir characterization, production forecasting, and well test interpretation. The results show that machine learning can automate and accelerate many reservoirs engineering tasks with acceptable level of accuracy, resulting in more efficient and cost-effective decisions. Although machine learning presents promising results at this stage, there are still several crucial challenges that need to be addressed, such as data quality and data scarcity, the lack of physics nature of machine learning algorithms, and joint modelling of multiple data sources/formats. The significance of this research is that it demonstrates the potential of machine learning to revolutionize the oil and gas sector by providing more accurate and efficient solutions for challenging problems.

Suggested Citation

  • Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1392-:d:1051695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    2. Hongyang Chu & Xinwei Liao & Peng Dong & Zhiming Chen & Xiaoliang Zhao & Jiandong Zou, 2019. "An Automatic Classification Method of Well Testing Plot Based on Convolutional Neural Network (CNN)," Energies, MDPI, vol. 12(15), pages 1-27, July.
    3. Nilesh Dixit & Paul McColgan & Kimberly Kusler, 2020. "Machine Learning-Based Probabilistic Lithofacies Prediction from Conventional Well Logs: A Case from the Umiat Oil Field of Alaska," Energies, MDPI, vol. 13(18), pages 1-15, September.
    4. Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
    5. Zekun Guo & Hongjun Wang & Xiangwen Kong & Li Shen & Yuepeng Jia, 2021. "Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation," Energies, MDPI, vol. 14(17), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beichen Zhao & Binshan Ju & Chaoxiang Wang, 2023. "Initial-Productivity Prediction Method of Oil Wells for Low-Permeability Reservoirs Based on PSO-ELM Algorithm," Energies, MDPI, vol. 16(11), pages 1-17, June.
    2. Ma, Haoming & McCoy, Sean T. & Chen, Zhangxin, 2025. "Development and comparison of reduced-order models for CO2-enhanced oil recovery predictions," Energy, Elsevier, vol. 320(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    2. Zisong Wang & Zhiliang Cheng & Xiujian Ding & Lu Xia, 2024. "Research on intelligent decision support systems for oil and gas exploration based on machine learning," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-38, December.
    3. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    4. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    5. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    8. Artur Kwasek & Maria Kocot & Izabela Gontarek & Igor Protasowicki & Bartosz Blaszczak, 2024. "Negative Faces of Artificial Intelligence in the Conditions of the Knowledge-Based Economy," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 465-477.
    9. Chung-Yuan Chang & Yen-Wei Feng & Tejender Singh Rawat & Shih-Wei Chen & Albert Shihchun Lin, 2025. "Optimization of laser annealing parameters based on bayesian reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2479-2492, April.
    10. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    11. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    12. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    13. Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
    14. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    15. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    16. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    17. José A. Torres-León & Marco A. Moreno-Armendáriz & Hiram Calvo, 2024. "Representing the Information of Multiplayer Online Battle Arena (MOBA) Video Games Using Convolutional Accordion Auto-Encoder (A 2 E) Enhanced by Attention Mechanisms," Mathematics, MDPI, vol. 12(17), pages 1-19, September.
    18. Zehou Xiang & Kesai Li & Hucheng Deng & Yan Liu & Jianhua He & Xiaoju Zhang & Xianhong He, 2021. "Research on Test and Logging Data Quality Classification for Gas–Water Identification," Energies, MDPI, vol. 14(21), pages 1-18, October.
    19. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    20. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1392-:d:1051695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.