IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1383-d1051330.html
   My bibliography  Save this article

Heat Transfer Analysis and Operation Optimization of an Intermediate Fluid Vaporizer

Author

Listed:
  • Kun Huang

    (Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China)

  • Xingyu Zhou

    (Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China)

  • Cheng Huang

    (School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China)

  • Lin Wang

    (School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Dequan Li

    (Sinopec Tianjin Liquefied Natural Gas Co., Ltd., Tianjin 300457, China)

  • Jinrei Zhao

    (Sinopec Tianjin Liquefied Natural Gas Co., Ltd., Tianjin 300457, China)

Abstract

An intermediate fluid vaporizer (IFV) is a typical vaporizer of liquefied natural gas (LNG), which is used in a large number of LNG terminals. Since it requires a large supply of seawater during its operation, it generates a lot of energy consumption. In this study, to reduce the seawater consumption in the regasification system, the heat transfer process was first numerically calculated, and the heat transfer coefficient of the IFV was determined for different seawater inlet temperatures, seawater flow rates, and LNG flow rates. The calculation results of the heat transfer coefficient were integrated into the numerical model in HYSYS, and the minimum seawater flow of the IFV under different working conditions was obtained. For receiving terminals using multiple IFVs, this study programmed calculations based on optimization software. The operating configuration of the IFVs under different operating conditions was optimized to reduce the consumption of seawater in the regasification system of the LNG terminals.

Suggested Citation

  • Kun Huang & Xingyu Zhou & Cheng Huang & Lin Wang & Dequan Li & Jinrei Zhao, 2023. "Heat Transfer Analysis and Operation Optimization of an Intermediate Fluid Vaporizer," Energies, MDPI, vol. 16(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1383-:d:1051330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Germeshausen, Robert & von Graevenitz, Kathrine & Achtnicht, Martin, 2022. "Does the stick make the carrot more attractive? State mandates and uptake of renewable heating technologies," Regional Science and Urban Economics, Elsevier, vol. 92(C).
    2. Gu, Guangtong & Zheng, Haorong & Tong, Lingyun & Dai, Yaxian, 2022. "Does carbon financial market as an environmental regulation policy tool promote regional energy conservation and emission reduction? Empirical evidence from China," Energy Policy, Elsevier, vol. 163(C).
    3. Wen, Chuang & Cao, Xuewen & Yang, Yan & Li, Wenlong, 2012. "Numerical simulation of natural gas flows in diffusers for supersonic separators," Energy, Elsevier, vol. 37(1), pages 195-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singhal, Puja & Pahle, Michael & Kalkuhl, Matthias & Levesque, Antoine & Sommer, Stephan & Berneiser, Jessica, 2022. "Beyond good faith: Why evidence-based policy is necessary to decarbonize buildings cost-effectively in Germany," Energy Policy, Elsevier, vol. 169(C).
    2. Robert Germeshausen & Kathrine von Graevenitz, 2023. "State Mandates on Renewable Heating Technologies and the Housing Market," Land Economics, University of Wisconsin Press, vol. 99(4), pages 543-557.
    3. Zhang, Bo & Guo, Yaning & Li, Nian & He, Peng & Guo, Xiangji, 2023. "Experimental study of gas–liquid behavior in three-flow vortex tube with sintered metal porous material as the drain part," Energy, Elsevier, vol. 263(PA).
    4. Yuhao Wang & Jianmin Wang & Zhongbing Dong, 2022. "Interactions and Co-Governance Policies of Stakeholders in the Carbon Emission Reduction," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    5. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    6. Na Yu & Jianghua Chen & Lei Cheng, 2022. "Evolutionary Game Analysis of Carbon Emission Reduction between Government and Enterprises under Carbon Quota Trading Policy," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    7. Naimeh Mohammadi & Hamid Mostofi & Hans-Liudger Dienel, 2023. "Policy Chain of Energy Transition from Economic and Innovative Perspectives: Conceptual Framework and Consistency Analysis," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    8. Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
    9. Yang Li & Lei Zhang, 2023. "Collaborative Governance and Environmental Regulation Measures for Pollution Reduction and Carbon Reduction in the Yangtze River Basin under the “Double Carbon” Goal," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    10. Lai, Aolin & Wang, Qunwei & Cui, Lianbiao, 2022. "Can market segmentation lead to green paradox? Evidence from China," Energy, Elsevier, vol. 254(PC).
    11. Xiaoyu Li & Jiawei Tang & Chao Feng & Yexiao Chen, 2023. "Can Government Environmental Auditing Help to Improve Environmental Quality? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    12. Shooshtari, S.H. Rajaee & Shahsavand, A., 2017. "Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave," Energy, Elsevier, vol. 120(C), pages 153-163.
    13. Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
    14. Yongming Zhu & Lanxiao Niu & Zheyun Zhao & Jing Li, 2022. "The Tripartite Evolution Game of Environmental Governance under the Intervention of Central Government," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    15. Zhang, Zhifei & Li, Tie & Shi, Weiquan, 2019. "Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets," Energy, Elsevier, vol. 171(C), pages 372-384.
    16. Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
    17. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    18. Xiaodi Yang & Di Wang, 2022. "Heterogeneous Environmental Regulation, Foreign Direct Investment, and Regional Carbon Dioxide Emissions: Evidence from China," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    19. Niu, Xiaoqin & Yüksel, Serhat & Dinçer, Hasan, 2023. "Emission strategy selection for the circular economy-based production investments with the enhanced decision support system," Energy, Elsevier, vol. 274(C).
    20. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1383-:d:1051330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.