IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1224-d1044566.html
   My bibliography  Save this article

Enhanced Liquid Fuel Production from Pyrolysis of Plastic Waste Mixtures Using a Natural Mineral Catalyst

Author

Listed:
  • Faisal Abnisa

    (Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

Abstract

Since plastic wastes are commonly found and accumulate in numerous types and forms, the pyrolysis of plastic waste mixtures seems more feasible to be selected for large-scale production. However, the process typically produces less liquid than individual plastic pyrolysis. This study proposed a viable approach for catalytic pyrolysis by using natural mineral catalysts without modification. Bentonite was selected as a natural mineral catalyst while HZSM-5 was used for performance comparison. The process was evaluated in situ using a fixed-bed reactor at temperatures between 400 °C and 500 °C. The mixture of plastic waste composition was designed based on the non-recycled plastics data. The results showed that 42.55 wt% of liquid yield was obtained from thermal pyrolysis using Malaysia’s non-recycled plastics data. It was then found that using HZSM-5 and bentonite catalysts significantly boosted liquid products to about 56 and 60%, respectively. The presence of catalysts also positively minimized tar formation and eliminated wax formation in the liquid product. Furthermore, the catalytic process showed remarkable improvements in aromatics and alkane compounds in the liquid while only alkenes were found to be high when bentonite was used.

Suggested Citation

  • Faisal Abnisa, 2023. "Enhanced Liquid Fuel Production from Pyrolysis of Plastic Waste Mixtures Using a Natural Mineral Catalyst," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1224-:d:1044566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hueon Namkung & Se-In Park & Yoomin Lee & Tae Uk Han & Jun-Ik Son & Jun-Gu Kang, 2022. "Investigation of Oil and Facility Characteristics of Plastic Waste Pyrolysis for the Advanced Waste Recycling Policy," Energies, MDPI, vol. 15(12), pages 1-10, June.
    2. Kaixin Li & Shao Wee Lee & Guoan Yuan & Junxi Lei & Shengxuan Lin & Piyarat Weerachanchai & Yanhui Yang & Jing-Yuan Wang, 2016. "Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture," Energies, MDPI, vol. 9(6), pages 1-15, June.
    3. Isah Yakub Mohammed & Feroz Kabir Kazi & Suzana Yusup & Peter Adeniyi Alaba & Yahaya Muhammad Sani & Yousif Abdalla Abakr, 2016. "Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst," Energies, MDPI, vol. 9(4), pages 1-17, March.
    4. Williams, Paul T. & Slaney, Edward, 2007. "Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 754-769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.
    2. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    3. Sogand Musivand & Maria Paola Bracciale & Martina Damizia & Paolo De Filippis & Benedetta de Caprariis, 2023. "Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis," Energies, MDPI, vol. 16(13), pages 1-13, June.
    4. João Cardoso & Valter Silva & Daniela Eusébio & Paulo Brito, 2017. "Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor," Energies, MDPI, vol. 10(11), pages 1-20, November.
    5. Luo, Wei & Hu, Qing & Fan, Zhong-yi & Wan, Jun & He, Qian & Huang, Sheng-xiong & Zhou, Nan & Song, Min & Zhang, Jia-chao & Zhou, Zhi, 2020. "The effect of different particle sizes and HCl-modified kaolin on catalytic pyrolysis characteristics of reworked polypropylene plastics," Energy, Elsevier, vol. 213(C).
    6. Munir, Dureem & Irfan, Muhammad F. & Usman, Muhammad R., 2018. "Hydrocracking of virgin and waste plastics: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 490-515.
    7. Roksana Muzyka & Grzegorz Gałko & Miloud Ouadi & Marcin Sajdak, 2023. "Impact of Plastic Blends on the Gaseous Product Composition from the Co-Pyrolysis Process," Energies, MDPI, vol. 16(2), pages 1-16, January.
    8. Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    11. Augusto Fernando de Freitas Costa & Caio Campos Ferreira & Simone Patrícia Aranha da Paz & Marcelo Costa Santos & Luiz Gabriel Santos Moreira & Neyson Martins Mendonça & Fernanda Paula da Costa Assunç, 2023. "Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor," Energies, MDPI, vol. 16(1), pages 1-32, January.
    12. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    13. Sandhya Kuruvalan Vijayan & Mahmud Arman Kibria & Md Hemayet Uddin & Sankar Bhattacharya, 2021. "Pretreatment of Automotive Shredder Residues, Their Chemical Characterisation, and Pyrolysis Kinetics," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    14. Hongbin Gao & Jingkuan Li, 2019. "Thermogravimetric analysis of the co-combustion of coal and polyvinyl chloride," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-35, October.
    15. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    17. Azubuike Francis Anene & Siw Bodil Fredriksen & Kai Arne Sætre & Lars-Andre Tokheim, 2018. "Experimental Study of Thermal and Catalytic Pyrolysis of Plastic Waste Components," Sustainability, MDPI, vol. 10(11), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1224-:d:1044566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.