IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1145-d1042209.html
   My bibliography  Save this article

Reproduction of Nanofluid Synthesis, Thermal Properties and Experiments in Engineering: A Research Paradigm Shift

Author

Listed:
  • Humaira Yasmin

    (Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Solomon O. Giwa

    (Department of Mechanical Engineering, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria)

  • Saima Noor

    (Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Hikmet Ş. Aybar

    (Department of Mechanical Engineering, Eastern Mediterranean University, TRNC, via Mersin 10, 99628 Famagusta, Turkey
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan)

Abstract

The suspension of different nanoparticles into various conventional thermal fluids to synthesize nanofluids has been proven to possess superior thermal, optical, tribological, and convective properties, and the heat transfer performance over conventional thermal fluids. This task appears trivial but is complicated and significant to nanofluid synthesis and its subsequent utilization in diverse applications. The stability of mono and hybrid nanofluids is significantly related to stirring duration and speed; volume, density, and base fluid type; weight/volume concentration, density, nano-size, and type of mono or hybrid nanoparticles used; type and weight of surfactant used; and sonication time, frequency, mode, and amplitude. The effects of these parameters on stability consequently affect the thermal, optical, tribological, and convective properties, and the heat transfer performance of nanofluids in various applications, leading to divergent, inaccurate, and suspicious results. Disparities in results have inundated the public domain in this regard. Thus, this study utilized published works in the public domain to highlight the trend in mono or hybrid nanofluid formulation presently documented as the norm, with the possibility of changing the status quo. With the huge progress made in this research area in which a large quantum of different nanoparticles, base fluids, and surfactants have been deployed and more are still emerging in the application of these advanced thermal fluids in diverse areas, there is a need for conformity and better accuracy of results. Reproduction of results of stability, thermal, optical, tribological, anti-wear, and fuel properties; photothermal conversion; and supercooling, lubrication, engine, combustion, emission, thermo-hydraulic, and heat transfer performances of formulated mono or hybrid nanofluids are possible through the optimization and detailed documentation of applicable nanofluid preparation parameters (stirring time and speed, sonication duration, amplitude, mode, frequency, and surfactant concentration) employed in formulating mono or hybrid nanofluids. This proposed approach is expected to project a new frontier in nanofluid research and serve as a veritable working guide to the nanofluid research community.

Suggested Citation

  • Humaira Yasmin & Solomon O. Giwa & Saima Noor & Hikmet Ş. Aybar, 2023. "Reproduction of Nanofluid Synthesis, Thermal Properties and Experiments in Engineering: A Research Paradigm Shift," Energies, MDPI, vol. 16(3), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1145-:d:1042209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhinesh Kumar, D. & Valan Arasu, A., 2018. "A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1669-1689.
    2. Tong, Yijie & Boldoo, Tsogtbilegt & Ham, Jeonggyun & Cho, Honghyun, 2020. "Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid," Energy, Elsevier, vol. 196(C).
    3. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    4. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humaira Yasmin & Zahid Nisar, 2023. "Mathematical Analysis of Mixed Convective Peristaltic Flow for Chemically Reactive Casson Nanofluid," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    2. Wagd Ajeeb & S. M. Sohel Murshed, 2023. "Characterization of Thermophysical and Electrical Properties of SiC and BN Nanofluids," Energies, MDPI, vol. 16(9), pages 1-13, April.
    3. Basma Souayeh & Kashif Ali Abro & Suvanjan Bhattacharyya, 2023. "Editorial for the Special Issue “Heat Transfer Enhancement and Fluid Flow Features Due to the Addition of Nanoparticles in Engineering Applications”," Energies, MDPI, vol. 16(5), pages 1-3, February.
    4. Jose Jaime Taha-Tijerina & Karla Aviña & Nicolás Antonio Ulloa-Castillo & Dulce Viridiana Melo-Maximo, 2023. "Thermal Transport and Physical Characteristics of Silver-Reinforced Biodegradable Nanolubricant," Sustainability, MDPI, vol. 15(11), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    3. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    4. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    6. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).
    7. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    8. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    9. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    11. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    12. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & Nazia Hossain & Asif Afzal & C Ahamed Saleel, 2021. "Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends," Energies, MDPI, vol. 14(18), pages 1-19, September.
    13. Amged Al Ezzi & Miqdam T. Chaichan & Hasan S. Majdi & Ali H. A. Al-Waeli & Hussein A. Kazem & Kamaruzzaman Sopian & Mohammed A. Fayad & Hayder A. Dhahad & Talal Yusaf, 2022. "Nano-Iron Oxide-Ethylene Glycol-Water Nanofluid Based Photovoltaic Thermal (PV/T) System with Spiral Flow Absorber: An Energy and Exergy Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    14. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    15. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    16. Pavel G. Struchalin & Dmitrii M. Kuzmenkov & Vladimir S. Yunin & Xinzhi Wang & Yurong He & Boris V. Balakin, 2022. "Hybrid Nanofluid in a Direct Absorption Solar Collector: Magnetite vs. Carbon Nanotubes Compete for Thermal Performance," Energies, MDPI, vol. 15(5), pages 1-8, February.
    17. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    18. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    19. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    20. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1145-:d:1042209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.