IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125007141.html

Thermophysical advancements and stability dynamics in nanofluids for solar energy harvesting: A comprehensive review

Author

Listed:
  • Hussain, Zakir
  • Lee, Minjung
  • Cho, Honghyun

Abstract

This review critically examines the interplay between nanofluids and solar energy harvesting applications, integrating the thermophysical properties and stability dynamics. Based on this review the smaller, elongated nanoparticles particularly graphene-based can significantly enhance thermal conductivity and improve dispersion stability in solar energy applications. Additionally, higher nanoparticle concentration increases viscosity and improves stability but there is an optimal concentration threshold. This study also examines the advancements in nanofluid stabilization techniques, including the use of surfactants, ultrasonication, and nanoparticle functionalization. However, these methods can also diminish thermal conductivity, especially under high-temperature conditions. In addition, nanofluids have been widely explored in solar energy harvesting applications ranging from carbon-based to MXene-based and hybrid nanostructures. These nanofluids demonstrate substantial efficiency improvements in DASCs, with some configurations achieving over 90 % photothermal conversion efficiency. The recent innovation in the field of ionic and magnetic nanofluids has also been analyzed. Moreover, advanced eco-friendly approaches to nanofluid synthesis, leveraging plant extracts and microbial routes, present sustainable alternatives to conventional methods, expanding the green potential of solar-thermal systems. In conclusion, this review encapsulates both the current state-of-the-art and the prospective future directions of nanofluids for solar energy harvesting, providing valuable insights for researchers and practitioners.

Suggested Citation

  • Hussain, Zakir & Lee, Minjung & Cho, Honghyun, 2025. "Thermophysical advancements and stability dynamics in nanofluids for solar energy harvesting: A comprehensive review," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007141
    DOI: 10.1016/j.renene.2025.123052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125007141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Gao, Yuanzhi & Chen, Bo & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhang, Xiaosong, 2022. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe," Applied Energy, Elsevier, vol. 327(C).
    3. Shah, Janki & Gupta, Sanjeev K. & Sonvane, Yogesh & Davariya, Vipul, 2017. "Review: Enhancing efficiency of solar thermal engineering systems by thermophysical properties of a promising nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1343-1348.
    4. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    5. Dewanjee, Debojit & Kundu, Balaram, 2025. "A review of applications of green nanofluids for performance improvement of solar collectors," Renewable Energy, Elsevier, vol. 240(C).
    6. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    7. Chougule, Sandesh S. & Srivastava, Abhishek & Bolegave, Gaurav G. & Gaikwad, Bhagyashree A. & Shirage, Parasharam M. & Markides, Christos N., 2024. "Next-generation solar technologies: Unlocking the potential of Ag-ZnO hybrid nanofluids for enhanced spectral-splitting photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 236(C).
    8. Yazdanifard, Farideh & Ameri, Mehran & Ebrahimnia-Bajestan, Ehsan, 2017. "Performance of nanofluid-based photovoltaic/thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 323-352.
    9. Gupta, Varun Kumar & Kumar, Sanjay & Kukreja, Rajeev & Chander, Nikhil, 2023. "Experimental thermal performance investigation of a direct absorption solar collector using hybrid nanofluid of gold nanoparticles with natural extract of Azadirachta Indica leaves," Renewable Energy, Elsevier, vol. 202(C), pages 1021-1031.
    10. Ram, Shri & Ganesan, H. & Saini, Vishnu & Kumar, Abhinav, 2023. "Performance assessment of a parabolic trough solar collector using nanofluid and water based on direct absorption," Renewable Energy, Elsevier, vol. 214(C), pages 11-22.
    11. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    12. Sonia Darabee & Mohammad Hamdan & Hadi Daghari & Salman Ajib, 2022. "Enrichment of the Usage of Solar Purification of Water by Employing Hybrid Nanofluid Mixtures," Energies, MDPI, vol. 15(16), pages 1-7, August.
    13. Hadi Rostamzadeh & Saeed Rostami & Majid Amidpour & Weifeng He & Dong Han, 2021. "Seawater Desalination via Waste Heat Recovery from Generator of Wind Turbines: How Economical Is It to Use a Hybrid HDH-RO Unit?," Sustainability, MDPI, vol. 13(14), pages 1-40, July.
    14. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    15. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    16. Hashemian, Mehran & Jafarmadar, Samad & Khalilarya, Shahram & Faraji, Masoud, 2022. "Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter," Renewable Energy, Elsevier, vol. 198(C), pages 426-439.
    17. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    18. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    19. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Pattnaik, P.K. & Mishra, S.R. & Shamshuddin, MD. & Panda, Subhajit & Baithalu, Rupa, 2024. "Significant statistical model of heat transfer rate in radiative Carreau tri-hybrid nanofluid with entropy analysis using response surface methodology used in solar aircraft," Renewable Energy, Elsevier, vol. 237(PA).
    21. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    22. Javidi, Mahbobeh & Entezari, Mohammad H., 2024. "The effect of ultrasonic waves on the structure, morphology, and thermal conductivity of graphene oxide as nanofluids for direct absorption solar collector application," Renewable Energy, Elsevier, vol. 237(PB).
    23. Byiringiro, Justin & Chaanaoui, Meriem & Halimi, Mohammed, 2024. "Heat transfer enhancement of a parabolic trough solar collector using innovative receiver configurations combined with a hybrid nanofluid: CFD analysis," Renewable Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loenko, Darya S. & Sheremet, Mikhail A., 2025. "Effect of solid/porous finned system on cooling of heat-generating element in a cavity filled with non-Newtonian nanosuspension and bottom heat-conducting substrate," Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dewanjee, Debojit & Kundu, Balaram, 2025. "A review of applications of green nanofluids for performance improvement of solar collectors," Renewable Energy, Elsevier, vol. 240(C).
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Wang, Xianling & Luo, Liang & Xiang, Jinwei & Zheng, Senlin & Shittu, Samson & Wang, Zhangyuan & Zhao, Xudong, 2021. "A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    5. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    6. Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).
    7. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    8. Aytaç, İpek & Khanlari, Ataollah & Tuncer, Azim Doğuş & Variyenli, Halil İbrahim & Ünvar, Sinan, 2024. "Performance improvement of a heat pipe evacuated solar water collector using quartz/water nanofluid: A numerical and experimental study," Renewable Energy, Elsevier, vol. 236(C).
    9. Mohamed Shameer Peer & Tsega Y. Melesse & Pier Francesco Orrù & Mattia Braggio & Mario Petrollese, 2025. "Next-Generation CSP: The Synergy of Nanofluids and Industry 4.0 for Sustainable Solar Energy Management," Energies, MDPI, vol. 18(8), pages 1-37, April.
    10. Hashemian, Mehran & Jafarmadar, Samad & Khalilarya, Shahram & Faraji, Masoud, 2022. "Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter," Renewable Energy, Elsevier, vol. 198(C), pages 426-439.
    11. Navegi, Ali & Maadi, Seyed Reza & Khanjani, Irandokht & Kazemian, Arash & Xiang, Changying & Ma, Tao, 2025. "Corrugated tubes as a paradigm shift in solar PV thermal system technologies: Numerical insights into performance," Energy, Elsevier, vol. 327(C).
    12. Maadi, Seyed Reza & Sabzali, Hossein & Arabkoohsar, Ahmad, 2024. "Performance characterization of nano-enhanced PV/T systems in various cross-sections, extended flow turbulators, fins, and corrugated patterns," Renewable Energy, Elsevier, vol. 229(C).
    13. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Javidi, Mahbobeh & Entezari, Mohammad H., 2024. "The effect of ultrasonic waves on the structure, morphology, and thermal conductivity of graphene oxide as nanofluids for direct absorption solar collector application," Renewable Energy, Elsevier, vol. 237(PB).
    15. Behera, Uma Sankar & Sangwai, Jitendra S. & Byun, Hun-Soo, 2025. "A comprehensive review on the recent advances in applications of nanofluids for effective utilization of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    16. Mo, Songping & Ye, Jiarong & Jia, Lisi & Chen, Ying, 2022. "Properties and performance of hybrid suspensions of MPCM/nanoparticles for LED thermal management," Energy, Elsevier, vol. 239(PE).
    17. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    18. Sofiah, A.G.N. & Samykano, M. & Rajamony, Reji Kumar & Pasupuleti, J. & Pandey, A.K. & Sulaiman, Nur Fatin, 2025. "Cutting-edge heat transfer: How hexagonal boron nitride nanofluids boost solar photovoltaic thermal (PVT) system performance?," Renewable Energy, Elsevier, vol. 252(C).
    19. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    20. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.