IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7668-d1283891.html
   My bibliography  Save this article

Enhanced Thermal Properties of Phase Change Materials through Surfactant-Functionalized Graphene Nanoplatelets for Sustainable Energy Storage

Author

Listed:
  • M. Arif Fikri

    (Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Pahang, Malaysia)

  • Subbarama Kousik Suraparaju

    (Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia)

  • M. Samykano

    (Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Pahang, Malaysia
    Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia)

  • A. K. Pandey

    (Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia
    Center of Excellence for Energy and Eco-Sustainability Research, Uttaranchal University, Dehradun 248007, India)

  • Reji Kumar Rajamony

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

  • K. Kadirgama

    (Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Pahang, Malaysia)

  • M. F. Ghazali

    (Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia)

Abstract

Phase change materials (PCMs) are increasingly gaining prominence in thermal energy storage due to their impressive energy storage capacity per unit volume, especially in applications with low and medium temperatures. Nevertheless, PCMs have significant limitations regarding their ability to conduct and store heat, primarily due to their inadequate thermal conductivity. One potential solution for improving the thermal conductivity of PCMs involves the inclusion of nanoparticles into them. However, a recurring issue arises after several thermal cycles, as most nanoparticles have a tendency to clump together and settle at the container’s base due to their low interfacial strength and poor compatibility. To address this challenge, including surfactants such as sodium dodecylbenzene sulfonate (SDBS) has emerged as a prevalent and economically viable approach, demonstrating a substantial impact on the dispersion of carbon nanoparticles within PCMs. The foremost objective is to investigate the improvement of thermal energy storage by utilizing graphene nanoplatelets (GNP), which are dispersed in A70 PCM at various weight percentages (0.1, 0.3, 0.5, 0.7, and 1.0), both with and without the use of surfactants. The findings indicate a remarkable enhancement in thermal conductivity when GNP with surfactants is added to the PCM, showing an impressive increase of 122.26% with a loading of 1.0 wt.% compared to conventional PCM. However, when 1.0 wt.% pure GNP was added, the thermal conductivity only increased by 48.83%. Additionally, the optical transmittance of the composite containing ASG-1.0 was significantly reduced by 84.95% compared to conventional PCM. Furthermore, this newly developed nanocomposite exhibits excellent stability, enduring 1000 thermal cycles and demonstrating superior thermal and chemical stability up to 257.51 °C. Due to its high thermal stability, the composite NePCM is an ideal candidate for preheating in industrial and photovoltaic thermal (PVT) applications, where it can effectively store thermal energy.

Suggested Citation

  • M. Arif Fikri & Subbarama Kousik Suraparaju & M. Samykano & A. K. Pandey & Reji Kumar Rajamony & K. Kadirgama & M. F. Ghazali, 2023. "Enhanced Thermal Properties of Phase Change Materials through Surfactant-Functionalized Graphene Nanoplatelets for Sustainable Energy Storage," Energies, MDPI, vol. 16(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7668-:d:1283891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1801-1809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    2. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    3. Bing, Naici & Yang, Jie & Gao, Huan & Xie, Huaqing & Yu, Wei, 2021. "Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion," Renewable Energy, Elsevier, vol. 173(C), pages 926-933.
    4. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    5. Weiguang Su & Yilin Li & Tongyu Zhou & Jo Darkwa & Georgios Kokogiannakis & Zhao Li, 2019. "Microencapsulation of Paraffin with Poly (Urea Methacrylate) Shell for Solar Water Heater," Energies, MDPI, vol. 12(18), pages 1-9, September.
    6. Wu, Minqiang & Li, Tingxian & He, Qifan & Du, Ruxue & Wang, Ruzhu, 2022. "Thermally conductive and form-stable phase change composite for building thermal management," Energy, Elsevier, vol. 239(PA).
    7. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Ji, W.H. & Wang, Z.Y. & Liang, L., 2019. "Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins," Applied Energy, Elsevier, vol. 250(C), pages 1280-1291.
    8. Zou, Ting & Fu, Wanwan & Liang, Xianghui & Wang, Shuangfeng & Gao, Xuenong & Zhang, Zhengguo & Fang, Yutang, 2020. "Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O," Energy, Elsevier, vol. 190(C).
    9. Li, Chuan & Li, Qi & Li, Yongliang & She, Xiaohui & Cao, Hui & Zhang, Peikun & Wang, Li & Ding, Yulong, 2019. "Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 238(C), pages 1074-1083.
    10. Ding, Jie & Wu, Xiaodong & Shen, Xiaodong & Cui, Sheng & Chen, Xiangbao, 2020. "A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation," Energy, Elsevier, vol. 210(C).
    11. Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
    13. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    14. Lin, Xuemin & Ling, Ziye & Fang, Xiaoming & Zhang, Zhengguo, 2022. "Flexibility and shape memory of phase change material capable of rapid electric heating function for wearable thermotherapy," Applied Energy, Elsevier, vol. 327(C).
    15. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    17. Wang, Guangyao & Ha, Dong Sam & Wang, Kevin G., 2019. "A scalable environmental thermal energy harvester based on solid/liquid phase-change materials," Applied Energy, Elsevier, vol. 250(C), pages 1468-1480.
    18. Wu, Weixiong & Wu, Wei & Wang, Shuangfeng, 2019. "Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications," Applied Energy, Elsevier, vol. 236(C), pages 10-21.
    19. He, Yayue & Li, Wei & Han, Na & Wang, Jianping & Zhang, Xingxiang, 2019. "Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor," Applied Energy, Elsevier, vol. 247(C), pages 615-629.
    20. Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7668-:d:1283891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.