IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7623-d1282260.html
   My bibliography  Save this article

Energy-Saving Control Method for Factory Mushroom Room Air Conditioning Based on MPC

Author

Listed:
  • Mingfei Wang

    (College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
    Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Wengang Zheng

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Chunjiang Zhao

    (College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
    Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Yang Chen

    (College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Chunling Chen

    (College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Xin Zhang

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

Abstract

The energy consumption of the mushroom room air conditioning system accounts for 40% of the total energy consumption of the mushroom factory. Efficient and energy-efficient mushroom factories and mushroom houses are the development direction of the industry. Compared with maintenance structure transformation and air conditioning equipment upgrading, energy-saving technology based on regulation methods has the advantages of less investment and fast effectiveness, which has attracted attention. The current methods for regulating air conditioning in edible mushroom factories include simple on/off thermostat control or PID. In the field of energy efficiency in commercial building air conditioning, a large number of studies have shown that compared with traditional control algorithms such as classic on/off or PID control, model predictive control can significantly improve energy efficiency. However, there is little literature mentioning the application of MPC in factory mushroom production rooms. This paper proposes a data-driven MPC and PID combined energy-saving control method for mushroom room air conditioning. This method uses the CNN-GRU-Attention combination neural network as the prediction model, combined with prediction error compensation and dynamic update mechanism of the prediction model dataset, to achieve an accurate prediction of indoor temperature in mushroom houses. Establish an objective function for air conditioning control duration and temperature, use the non-dominated sorting genetic algorithm II (NSGA-II) to solve for the optimal control sequence of the air conditioning in the control time domain, and use the entropy weight method to determine the optimal decision quantity. Integrate rolling optimization, feedback mechanism, and PID to achieve precise and energy-saving control of the mushroom room environment. The experimental results show that compared with the on/off thermostat and PID controller, the designed controller reduces power consumption by 12% and 5%, respectively, and has good application and demonstration value in the field of industrial production of edible mushrooms.

Suggested Citation

  • Mingfei Wang & Wengang Zheng & Chunjiang Zhao & Yang Chen & Chunling Chen & Xin Zhang, 2023. "Energy-Saving Control Method for Factory Mushroom Room Air Conditioning Based on MPC," Energies, MDPI, vol. 16(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7623-:d:1282260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    3. Chen, Yibo & Gao, Junxi & Yang, Jianzhong & Berardi, Umberto & Cui, Guoyou, 2023. "An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting," Applied Energy, Elsevier, vol. 333(C).
    4. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    5. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    6. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    7. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    2. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    3. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    4. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    5. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    6. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    7. Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
    8. Ferrara, Maria & Rolfo, Andrea & Prunotto, Federico & Fabrizio, Enrico, 2019. "EDeSSOpt – Energy Demand and Supply Simultaneous Optimization for cost-optimized design: Application to a multi-family building," Applied Energy, Elsevier, vol. 236(C), pages 1231-1248.
    9. Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.
    10. Germán Campos Gordillo & Germán Ramos Ruiz & Yves Stauffer & Stephan Dasen & Carlos Fernández Bandera, 2020. "EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB ® and C#," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    11. Diana Manjarres & Lara Mabe & Xabat Oregi & Itziar Landa-Torres, 2019. "Two-Stage Multi-Objective Meta-Heuristics for Environmental and Cost-Optimal Energy Refurbishment at District Level," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    12. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    13. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    14. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    16. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    17. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    18. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    19. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    20. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7623-:d:1282260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.