IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7593-d1280927.html
   My bibliography  Save this article

Improved Control Strategy for Water Pumping System Fed by Intermittent Renewable Source

Author

Listed:
  • Amine Ben Rhouma

    (Laboratoire des Systèmes Electriques LR11ES15, ENIT, Université de Tunis El Manar, Tunis 1002, Tunisia
    Department of Electrical Engineering, ENSIT, Université de Tunis, Tunis 1008, Tunisia)

  • Xavier Roboam

    (LAPLACE, UMR CNRS, Toulouse INP, UT3, Université de Toulouse, ENSEEIHT 2 Rue Camichel, CEDEX 07, 31071 Toulouse, France)

  • Jamel Belhadj

    (Laboratoire des Systèmes Electriques LR11ES15, ENIT, Université de Tunis El Manar, Tunis 1002, Tunisia
    Department of Electrical Engineering, ENSIT, Université de Tunis, Tunis 1008, Tunisia)

  • Bruno Sareni

    (LAPLACE, UMR CNRS, Toulouse INP, UT3, Université de Toulouse, ENSEEIHT 2 Rue Camichel, CEDEX 07, 31071 Toulouse, France)

Abstract

This paper focuses on a water pumping system fed by a hybrid (PV–Wind) generator. The water pumping system uses centrifugal pumps driven by variable speed Induction Motors (IM) controlled by a Field Oriented Control (FOC). The absence of battery storage to decouple sources and power demand is the main originality of the contribution, together with the typical adaptation of the FOC strategy. Furthermore, the absence of battery storage will consequently lead to fixing the system operating point at a steady state which is imposed both by the intermittent renewable energy sources and by the hydraulic load characteristics. The basic idea is then to adapt the system impedance by using the two degrees of freedom offered by the power source inverter in order to control, firstly, the DC bus voltage and, secondly, the rotor flux of the induction machine; the adaptation of the FOC strategy is based on this idea. Simulation results clearly confirmed by experimental investigations show the satisfying performance of the system even with variable powers of the intermittent renewable source.

Suggested Citation

  • Amine Ben Rhouma & Xavier Roboam & Jamel Belhadj & Bruno Sareni, 2023. "Improved Control Strategy for Water Pumping System Fed by Intermittent Renewable Source," Energies, MDPI, vol. 16(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7593-:d:1280927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dali, Mehdi & Belhadj, Jamel & Roboam, Xavier, 2010. "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 35(6), pages 2587-2595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivaram Natarajan Vijayanathan & Lavanya Anbazhagan & Jagabar Sathik Mohamed Ali & Divya Navamani Jayachandran & Pradeep Vishnuram & CH. Naga Sai Kalyan & Mustafa Abdullah & Rajkumar Singh Rathore, 2025. "Design of a Three-Input, Single-Output DC–DC Converter for Electric Charging Station," Energies, MDPI, vol. 18(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    2. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    3. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    5. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    6. Bizon, Nicu, 2013. "Energy harvesting from the PV Hybrid Power Source," Energy, Elsevier, vol. 52(C), pages 297-307.
    7. Boumaaraf, Houria & Talha, Abdelaziz & Bouhali, Omar, 2015. "A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1171-1179.
    8. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    9. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2011. "Analysis of a multi turbine offshore wind farm connected to a single large power converter operated with variable frequency," Energy, Elsevier, vol. 36(5), pages 3272-3281.
    10. Abdoune, Fateh & Aouzellag, Djamal & Ghedamsi, Kaci, 2016. "Terminal voltage build-up and control of a DFIG based stand-alone wind energy conversion system," Renewable Energy, Elsevier, vol. 97(C), pages 468-480.
    11. Ranaboldo, Matteo & Ferrer-Martí, Laia & García-Villoria, Alberto & Pastor Moreno, Rafael, 2013. "Heuristic indicators for the design of community off-grid electrification systems based on multiple renewable energies," Energy, Elsevier, vol. 50(C), pages 501-512.
    12. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    13. Han, Seulki & Won, Wangyun & Kim, Jiyong, 2017. "Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems," Energy, Elsevier, vol. 129(C), pages 86-100.
    14. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    15. Chen, Cheng-Chuan & Chang, Hong-Chan & Kuo, Cheng-Chien & Lin, Chien-Chin, 2013. "Programmable energy source emulator for photovoltaic panels considering partial shadow effect," Energy, Elsevier, vol. 54(C), pages 174-183.
    16. Tan, Yingjie & Meegahapola, Lasantha & Muttaqi, Kashem M., 2014. "A review of technical challenges in planning and operation of remote area power supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 876-889.
    17. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    18. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    19. Abu-Rayash, Azzam & Dincer, Ibrahim, 2020. "Development of an integrated energy system for smart communities," Energy, Elsevier, vol. 202(C).
    20. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7593-:d:1280927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.