IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7509-d1277138.html
   My bibliography  Save this article

Numerical Prediction on In-Cylinder Mixture Formation and Combustion Characteristics for SIDI Engine Fueled with Hydrogen: Effect of Injection Angle and Equivalence Ratio

Author

Listed:
  • Sehyun Oh

    (Graduate School, Department of Mechanical Engineering, Chosun University, 10, Chosundae 1-gil, Dong-gu, Gwangju 61452, Republic of Korea)

  • Jungsoo Park

    (Department of Mechanical Engineering, Chosun University, 10, Chosundae 1-gil, Dong-gu, Gwangju 61452, Republic of Korea)

Abstract

Although their ease of transport, storage, and use makes hydrocarbon fuels dominant in commercial energy systems, the emission of harmful gases, including greenhouse gases, is a fatal disadvantage. Despite ongoing research to improve thermal efficiency and reduce the emissions of internal combustion engines using conventional hydrocarbon fuels, achieving net-zero carbon requires decarbonizing fuels rather than reducing the use of internal combustion engines. Hence, transitioning away from hydrocarbon fuels and evolving internal combustion engines into clean engines using carbon-free fuels, such as hydrogen, is necessary. This study designs a 2.0 L research engine and numerically analyzes its combustion characteristics and spray behavior by varying the spray angle and equivalence ratio. When comparing the turbulence kinetic energy at a 45-degree spray angle with that at 30 degrees and 60 degrees, on average, there was a difference of approximately 37.54 m 2 /s 2 and 26.21 m 2 /s 2 , respectively. However, misfires occur in the lean condition. Although hydrogen has a wide flammability range, poor mixture formation under lean conditions can result in misfires. The 60-degree spray angle resulted in the highest combustion temperatures and pressures for all equivalence ratio conditions, consequently leading to the highest emissions of nitrogen oxides. Specifically, at a lambda value of 2.5, the 60-degree spray angle emitted approximately 29 ppm, 0 ppm, and 161 ppm of nitrogen oxides for each respective spray angle.

Suggested Citation

  • Sehyun Oh & Jungsoo Park, 2023. "Numerical Prediction on In-Cylinder Mixture Formation and Combustion Characteristics for SIDI Engine Fueled with Hydrogen: Effect of Injection Angle and Equivalence Ratio," Energies, MDPI, vol. 16(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7509-:d:1277138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    3. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    5. Gorbach, O.G. & Kost, C. & Pickett, C., 2022. "Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Lee, Jungwoo & Yang, Jae-Suk, 2019. "Global energy transitions and political systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    8. Turaj S. Faran & Lennart Olsson, 2018. "Geoengineering: neither economical, nor ethical—a risk–reward nexus analysis of carbon dioxide removal," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 63-77, February.
    9. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    10. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    11. Chandni Singh & James Ford & Debora Ley & Amir Bazaz & Aromar Revi, 2020. "Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice," Climatic Change, Springer, vol. 162(2), pages 255-277, September.
    12. Esmeralda López-Garza & René Fernando Domínguez-Cruz & Fernando Martell-Chávez & Iván Salgado-Tránsito, 2022. "Fuzzy Logic and Linear Programming-Based Power Grid-Enhanced Economical Dispatch for Sustainable and Stable Grid Operation in Eastern Mexico," Energies, MDPI, vol. 15(11), pages 1-18, June.
    13. Shinichiro Asayama, 2021. "Threshold, budget and deadline: beyond the discourse of climate scarcity and control," Climatic Change, Springer, vol. 167(3), pages 1-16, August.
    14. Lewis C. King & Jeroen C. J. M. Bergh, 2021. "Potential carbon leakage under the Paris Agreement," Climatic Change, Springer, vol. 165(3), pages 1-19, April.
    15. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    16. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.
    17. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    19. Nonki, Rodric M. & Amoussou, Ernest & Lennard, Christopher J. & Lenouo, André & Tshimanga, Raphael M. & Houndenou, Constant, 2023. "Quantification and allocation of uncertainties of climate change impacts on hydropower potential under 1.5 °C and 2.0 °C global warming levels in the headwaters of the Benue River Basin, Cameroon," Renewable Energy, Elsevier, vol. 215(C).
    20. Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7509-:d:1277138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.