IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6359-d1231381.html
   My bibliography  Save this article

An Incentive-Based Mechanism to Enhance Energy Trading among Microgrids, EVs, and Grid

Author

Listed:
  • Muhammad Ahsan Khan

    (Department of Electrical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea)

  • Akhtar Hussain

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Woon-Gyu Lee

    (Department of Electrical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea)

  • Hak-Man Kim

    (Department of Electrical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
    Research Institute for Northeast Asian Super Grid, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea)

Abstract

The growing penetration of electric vehicles (EVs) introduces both opportunities and challenges for power grid operators. Incentivization is considered a viable option to tempt EV owners to participate in supporting the grid during peak load intervals while receiving compensation for their services. Therefore, this study proposes a two-step incentive mechanism to reduce the peak load of the grid by enabling power trading among the microgrid, EVs and the utility grid. In the first step, an incentive price is determined for EVs considering the grid-loading conditions during different hours of the day. In the second step, a multi-objective optimization problem is formulated to optimize trading among different entities, such as EVs, the microgrid and the utility grid. The two objectives considered in this study are the operation cost of the microgrid and the revenue of EVs. Monte Carlo simulations are used to deal with uncertainties associated with EVs. Simulations are conducted to analyze the impact of different weight parameters on the energy-trading amount and operation cost of EVs and MG. In addition, a sensitivity analysis is conducted to analyze the impact of changes in the EV fleet size on the energy-trading amount and operation cost.

Suggested Citation

  • Muhammad Ahsan Khan & Akhtar Hussain & Woon-Gyu Lee & Hak-Man Kim, 2023. "An Incentive-Based Mechanism to Enhance Energy Trading among Microgrids, EVs, and Grid," Energies, MDPI, vol. 16(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6359-:d:1231381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Qingqing & Li, Jianwei & Cao, Wanke & Li, Shuangqi & Lin, Jie & Huo, Da & He, Hongwen, 2020. "An improved vehicle to the grid method with battery longevity management in a microgrid application," Energy, Elsevier, vol. 198(C).
    2. Huang, Bing & Meijssen, Aart Gerard & Annema, Jan Anne & Lukszo, Zofia, 2021. "Are electric vehicle drivers willing to participate in vehicle-to-grid contracts? A context-dependent stated choice experiment," Energy Policy, Elsevier, vol. 156(C).
    3. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    4. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    5. Thomas Steffen & Ashley Fly & William Mitchell, 2020. "Optimal Electric Vehicle Charging Considering the Effects of a Financial Incentive on Battery Ageing," Energies, MDPI, vol. 13(18), pages 1-15, September.
    6. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    7. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "A cooperative game theoretic analysis of electric vehicles parking lot in smart grid," Energy, Elsevier, vol. 137(C), pages 129-139.
    8. Asfand Yar Ali & Akhtar Hussain & Ju-Won Baek & Hak-Man Kim, 2020. "Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-20, December.
    9. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    10. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    3. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    4. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    5. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    6. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    7. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    8. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    9. C. Birk Jones & Matthew Lave & William Vining & Brooke Marshall Garcia, 2021. "Uncontrolled Electric Vehicle Charging Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial or Industrial Loads," Energies, MDPI, vol. 14(6), pages 1-16, March.
    10. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    11. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    12. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    13. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    16. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    17. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    18. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    19. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
    20. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6359-:d:1231381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.