IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p6079-d1221008.html
   My bibliography  Save this article

Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I

Author

Listed:
  • Anna Samnioti

    (School of Mining and Metallurgical Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Vassilis Gaganis

    (School of Mining and Metallurgical Engineering, National Technical University of Athens, 15780 Athens, Greece
    Institute of Geoenergy, Foundation for Research and Technology-Hellas, 73100 Chania, Greece)

Abstract

In recent years, machine learning (ML) has become a buzzword in the petroleum industry with numerous applications that guide engineers toward better decision making. The most powerful tool that most production development decisions rely on is reservoir simulation with applications in numerous modeling procedures, such as individual simulation runs, history matching and production forecast and optimization. However, all these applications lead to considerable computational time- and resource-associated costs, and rendering reservoir simulators is not fast or robust, thus introducing the need for more time-efficient and smart tools like ML models which can adapt and provide fast and competent results that mimic simulators’ performance within an acceptable error margin. The first part of the present study (Part I) offers a detailed review of ML techniques in the petroleum industry, specifically in subsurface reservoir simulation, for cases of individual simulation runs and history matching, whereas ML-based production forecast and optimization applications are presented in Part II. This review can assist engineers as a complete source for applied ML techniques since, with the generation of large-scale data in everyday activities, ML is becoming a necessity for future and more efficient applications.

Suggested Citation

  • Anna Samnioti & Vassilis Gaganis, 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I," Energies, MDPI, vol. 16(16), pages 1-43, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6079-:d:1221008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/6079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/6079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vassilis Gaganis & Dirar Homouz & Maher Maalouf & Naji Khoury & Kyriaki Polychronopoulou, 2019. "An Efficient Method to Predict Compressibility Factor of Natural Gas Streams," Energies, MDPI, vol. 12(13), pages 1-20, July.
    2. Anna Samnioti & Vassiliki Anastasiadou & Vassilis Gaganis, 2022. "Application of Machine Learning to Accelerate Gas Condensate Reservoir Simulation," Clean Technol., MDPI, vol. 4(1), pages 1-21, March.
    3. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    4. Omar S. Alolayan & Abdullah O. Alomar & John R. Williams, 2023. "Parallel Automatic History Matching Algorithm Using Reinforcement Learning," Energies, MDPI, vol. 16(2), pages 1-27, January.
    5. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    6. Anna Samnioti & Eirini Maria Kanakaki & Evangelia Koffa & Irene Dimitrellou & Christos Tomos & Paschalia Kiomourtzi & Vassilis Gaganis & Sofia Stamataki, 2023. "Wellbore and Reservoir Thermodynamic Appraisal in Acid Gas Injection for EOR Operations," Energies, MDPI, vol. 16(5), pages 1-26, March.
    7. Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Papanikolaou & Eirini Maria Kanakaki & Stefanos Lempesis & Vassilis Gaganis, 2024. "Mass Balance-Based Quality Control of PVT Results of Reservoir Oil DL Studies," Energies, MDPI, vol. 17(13), pages 1-29, July.
    2. Mingzheng Qiao & Fan Zhang & Weiqi Li, 2025. "Rheological Properties of Crude Oil and Produced Emulsion from CO 2 Flooding," Energies, MDPI, vol. 18(3), pages 1-16, February.
    3. Eirini Maria Kanakaki & Anna Samnioti & Evangelia Koffa & Irene Dimitrellou & Ivan Obetzanov & Yannis Tsiantis & Paschalia Kiomourtzi & Vassilis Gaganis & Sofia Stamataki, 2023. "Prospects of an Acid Gas Re-Injection Process into a Mature Reservoir," Energies, MDPI, vol. 16(24), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eirini Maria Kanakaki & Anna Samnioti & Evangelia Koffa & Irene Dimitrellou & Ivan Obetzanov & Yannis Tsiantis & Paschalia Kiomourtzi & Vassilis Gaganis & Sofia Stamataki, 2023. "Prospects of an Acid Gas Re-Injection Process into a Mature Reservoir," Energies, MDPI, vol. 16(24), pages 1-27, December.
    2. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    3. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    4. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    5. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    6. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    7. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    8. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    9. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    10. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    11. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    12. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    13. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    14. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    15. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    17. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    18. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    19. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    20. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(3), pages 1145-1162.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6079-:d:1221008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.