IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p6013-d1218761.html
   My bibliography  Save this article

An Improved Multi-Timescale AEKF–AUKF Joint Algorithm for State-of-Charge Estimation of Lithium-Ion Batteries

Author

Listed:
  • Aihua Wu

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Yan Zhou

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Jingfeng Mao

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Xudong Zhang

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Junqiang Zheng

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

Abstract

State-of-charge (SoC) estimation is one of the core functions of battery energy management systems. An accurate SoC estimation can guarantee the safe and reliable operation of the batteries system. In order to overcome the practical problems of low accuracy, noise uncertainty, poor robustness, and adaptability in parameter identification and SoC estimation of lithium-ion batteries, this paper proposes a joint estimation method based on the adaptive extended Kalman filter (AEKF) algorithm and the adaptive unscented Kalman filter (AUKF) algorithm in multiple time scales for 18,650 ternary lithium-ion batteries. Based on the slowly varying characteristics of lithium-ion batteries’ parameters and the quickly varying characteristics of the SoC parameter, firstly, the AEKF algorithm was used to online identify the parameters of the model of batteries with a macroscopic time scale. Secondly, the identified parameters were applied to the AUKF algorithm for SoC estimation of lithium-ion batteries with a microscopic time scale. Finally, the comparative simulation experiments were implemented, and the experimental results show the proposed joint algorithm has higher accuracy, adaptivity, robustness, and self-correction capability compared with the conventional algorithm.

Suggested Citation

  • Aihua Wu & Yan Zhou & Jingfeng Mao & Xudong Zhang & Junqiang Zheng, 2023. "An Improved Multi-Timescale AEKF–AUKF Joint Algorithm for State-of-Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 16(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6013-:d:1218761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/6013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/6013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenxian Duan & Chuanxue Song & Yuan Chen & Feng Xiao & Silun Peng & Yulong Shao & Shixin Song, 2020. "Online Parameter Identification and State of Charge Estimation of Battery Based on Multitimescale Adaptive Double Kalman Filter Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-20, December.
    2. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    3. Chen, Xiaokai & Lei, Hao & Xiong, Rui & Shen, Weixiang & Yang, Ruixin, 2019. "A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 255(C).
    4. Diego Salazar & Marcelo Garcia, 2022. "Estimation and Comparison of SOC in Batteries Used in Electromobility Using the Thevenin Model and Coulomb Ampere Counting," Energies, MDPI, vol. 15(19), pages 1-13, September.
    5. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongcun Fan & Haotian Shi & Shunli Wang & Carlos Fernandez & Wen Cao & Junhan Huang, 2021. "A Novel Adaptive Function—Dual Kalman Filtering Strategy for Online Battery Model Parameters and State of Charge Co-Estimation," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Wang, Luxiao & Duan, Jiandong & Fan, Shaogui & Zhao, Ke, 2024. "An estimated value compensation method for state of charge estimation of lithium battery based on open circuit voltage change rate," Energy, Elsevier, vol. 313(C).
    3. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Filip Maletić & Mario Hrgetić & Joško Deur, 2020. "Dual Nonlinear Kalman Filter-Based SoC and Remaining Capacity Estimation for an Electric Scooter Li-NMC Battery Pack," Energies, MDPI, vol. 13(3), pages 1-16, January.
    5. Xu, Cheng & Zhang, E & Jiang, Kai & Wang, Kangli, 2022. "Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery," Applied Energy, Elsevier, vol. 327(C).
    6. Bachir Zine & Haithem Bia & Amel Benmouna & Mohamed Becherif & Mehroze Iqbal, 2022. "Experimentally Validated Coulomb Counting Method for Battery State-of-Charge Estimation under Variable Current Profiles," Energies, MDPI, vol. 15(21), pages 1-15, November.
    7. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    8. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    9. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    10. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    11. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    12. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    13. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    14. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    15. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    16. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    17. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    18. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    19. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    20. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6013-:d:1218761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.