IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5531-d1199243.html
   My bibliography  Save this article

Study on Flow and Heat Transfer Characteristics and Anti-Clogging Performance of Tree-Like Branching Microchannels

Author

Listed:
  • Linqi Shui

    (Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry, Key Laboratory of Manufacturing Equipment of Shaanxi Province, Xi’an University of Technology, Xi’an 710048, China)

  • Zhongkai Hu

    (Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry, Key Laboratory of Manufacturing Equipment of Shaanxi Province, Xi’an University of Technology, Xi’an 710048, China)

  • Hang Song

    (Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry, Key Laboratory of Manufacturing Equipment of Shaanxi Province, Xi’an University of Technology, Xi’an 710048, China)

  • Zhi Zhai

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jiatao Wang

    (Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry, Key Laboratory of Manufacturing Equipment of Shaanxi Province, Xi’an University of Technology, Xi’an 710048, China)

Abstract

In this paper, a tree-like branching microchannel with bifurcating interconnections is designed for gas turbine blade cooling. A theoretical analysis, experimental study, and numerical simulation of the heat transfer and hydrodynamic characteristics of the tree-like branching microchannel is performed, and the influence of the total number of branching levels m on the anti-clogging performance is also studied. The results indicate that the total heat transfer ratio and pressure drop ratio are closely related to the structur ne parameters. The comprehensive thermal performance increase with an increase in the ratio of L b / L 0 and fractal dimension D. Nu / Nu s , f / f s , and η are increased as m increases from 3 to 5. Furthermore, the tree-like microchannel network exhibits robustness for cooling gas turbine blades. A greater total number of branching levels and a higher Re number are advantageous for enhancing the anti-clogging performance of the tree-like branching microchannel.

Suggested Citation

  • Linqi Shui & Zhongkai Hu & Hang Song & Zhi Zhai & Jiatao Wang, 2023. "Study on Flow and Heat Transfer Characteristics and Anti-Clogging Performance of Tree-Like Branching Microchannels," Energies, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5531-:d:1199243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhong Ren & Xiaoyu Yang & Xunfeng Lu & Xueying Li & Jing Ren, 2021. "Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics," Energies, MDPI, vol. 14(16), pages 1-21, August.
    2. Kenichiro Takeishi, 2022. "Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-35, November.
    3. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    4. Joon Ahn, 2023. "Large Eddy Simulation of Flow and Heat Transfer in a Ribbed Channel for the Internal Cooling Passage of a Gas Turbine Blade: A Review," Energies, MDPI, vol. 16(9), pages 1-20, April.
    5. Chien-Shing Lee & Tom I. -P. Shih & Kenneth Mark Bryden & Richard P. Dalton & Richard A. Dennis, 2023. "Strongly Heated Turbulent Flow in a Channel with Pin Fins," Energies, MDPI, vol. 16(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joon Ahn, 2025. "Large Eddy Simulation Approaches for Trailing-Edge Heat Transfer in Gas Turbine Blades: A Review," Energies, MDPI, vol. 18(6), pages 1-23, March.
    2. Inês Figueira & Rayan Succar & Roni Barak Ventura & Maurizio Porfiri, 2025. "Urban scaling with censored data," PLOS Complex Systems, Public Library of Science, vol. 2(1), pages 1-22, January.
    3. repec:plo:pcbi00:1000486 is not listed on IDEAS
    4. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    5. Christos Makriyannis, 2023. "How the Biophysical Paradigm Impedes the Scientific Advancement of Ecological Economics: A Transdisciplinary Analysis," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    6. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    7. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    8. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    9. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    10. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    11. Brolly, Matthew & Woodhouse, Iain H., 2012. "A “Matchstick Model” of microwave backscatter from a forest," Ecological Modelling, Elsevier, vol. 237, pages 74-87.
    12. Eva Maria Griebeler & Nicole Klein & P Martin Sander, 2013. "Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-17, June.
    13. Dalgaard, Carl-Johan & Strulik, Holger, 2011. "Energy distribution and economic growth," Resource and Energy Economics, Elsevier, vol. 33(4), pages 782-797.
    14. Rossana Mastrandrea & Rob ter Burg & Yuli Shan & Klaus Hubacek & Franco Ruzzenenti, 2022. "Scaling laws in global corporations as a benchmarking approach to assess environmental performance," Papers 2206.03148, arXiv.org, revised Jul 2023.
    15. Klement Stojanovski & Ioana Gheorghe & Peter Lenart & Anne Lanjuin & William B. Mair & Benjamin D. Towbin, 2023. "Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Husmann, Kai & Möhring, Bernhard, 2017. "Modelling the economically viable wood in the crown of European beech trees," Forest Policy and Economics, Elsevier, vol. 78(C), pages 67-77.
    17. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    18. Torres-Hugas, Lluís & Duch, Jordi & Gómez, Sergio, 2024. "Structural prediction of super-diffusion in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    19. He, Ji-Huan, 2006. "An allometric scaling law between gray matter and white matter of cerebral cortex," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 864-867.
    20. Bill McKelvey & Benyamin B. Lichtenstein & Pierpaolo Andriani, 2012. "When organisations and ecosystems interact: toward a law of requisite fractality in firms," International Journal of Complexity in Leadership and Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 104-136.
    21. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5531-:d:1199243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.