IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5280-d1190769.html
   My bibliography  Save this article

Frequency Dynamics of Power Systems with Inertial Response Support from Wind Generation

Author

Listed:
  • Bruno Augusto Bastiani

    (System Operation Division, Itaipu Binacional, Foz do Iguaçu 85856-970, Brazil)

  • Ricardo Vasques de Oliveira

    (Electrical Engineering Department, Federal University of Technology, Pato Branco 85503-390, Brazil)

Abstract

Inertial response support from wind turbine generators has become a priority requirement in most grid codes to improve the frequency response and frequency stability margins of power systems. However, the interaction between MPPT and inertial controllers may significantly degrade the power system dynamics. Therefore, there is a need to comprehensively understand the electromechanical dynamics of power systems with high penetration of wind generation. In this context, this work proposes a simplified dynamic model to assess the electromechanical dynamics of modern power systems with inertial response support from wind generation. The proposed simplified model allows simple analyses of the intrinsic and extrinsic aspects of wind generation that directly affect the system frequency dynamics and the dynamics of wind turbine generators. As a secondary contribution, this work also provides a comprehensive assessment of intrinsic and extrinsic aspects of wind generation that significantly affect the electromechanical dynamics of power systems with inertial response support from wind generation.

Suggested Citation

  • Bruno Augusto Bastiani & Ricardo Vasques de Oliveira, 2023. "Frequency Dynamics of Power Systems with Inertial Response Support from Wind Generation," Energies, MDPI, vol. 16(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5280-:d:1190769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    2. Alija Mujcinagic & Mirza Kusljugic & Emir Nukic, 2020. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area," Energies, MDPI, vol. 13(23), pages 1-17, November.
    3. Jun Wang & Yien Xu & Xiaoxin Wu & Jiejie Huang & Xinsong Zhang & Hongliang Yuan, 2021. "Enhanced Inertial Response Capability of a Variable Wind Energy Conversion System," Energies, MDPI, vol. 14(23), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    2. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    3. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Abhimanyu Kaushal & Dirk Van Hertem, 2019. "An Overview of Ancillary Services and HVDC Systems in European Context," Energies, MDPI, vol. 12(18), pages 1-20, September.
    6. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    7. Florian Errigo & Leandro De Oliveira Porto & Florent Morel, 2022. "Design Methodology Based on Prebuilt Components for Modular Multilevel Converters with Partial Integration of Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-18, July.
    8. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    9. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.
    10. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    11. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    12. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2023. "Small-Signal Modeling and Stability Analysis of a Grid-Following Inverter with Inertia Emulation," Energies, MDPI, vol. 16(16), pages 1-28, August.
    13. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    14. Welcome Khulekani Ntuli & Musasa Kabeya & Katleho Moloi, 2024. "Review of Low Voltage Ride-Through Capabilities in Wind Energy Conversion System," Energies, MDPI, vol. 17(21), pages 1-33, October.
    15. Julian Struwe & Holger Wrede & Hendrik Vennegeerts, 2023. "Validation Aspects for Grid-Forming Converters Based on System Characteristics and Inertia Impact," Energies, MDPI, vol. 16(21), pages 1-25, October.
    16. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
    17. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    18. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    19. Davide del Giudice & Samuele Grillo, 2019. "Analysis of the Sensitivity of Extended Kalman Filter-Based Inertia Estimation Method to the Assumed Time of Disturbance," Energies, MDPI, vol. 12(3), pages 1-19, February.
    20. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5280-:d:1190769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.