IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5264-d1190156.html
   My bibliography  Save this article

Modelling Aero-Structural Deformation of Flexible Membrane Kites

Author

Listed:
  • Jelle A. W. Poland

    (Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

  • Roland Schmehl

    (Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

Abstract

Airborne wind energy systems using flexible membrane wings have the advantages of a low weight, small packing volume, high mobility and rapid deployability. This paper investigates the aero-structural deformation of a leading edge inflatable kite for airborne wind energy harvesting. In the first step, a triangular two-plate representation of the wing is introduced, leading to an analytical description of the wing geometry depending on the symmetric actuation state. In the second step, this geometric constraint-based model is refined to a multi-segment wing representation using a particle system approach. Each wing segment consists of four point masses kept at a constant distance along the tubular frame by linear spring-damper elements. An empirical correlation is used to model the billowing of the wing’s trailing edge. The linear spring-damper elements also the model line segments of the bridle line system, with each connecting two point masses. Three line segments can also be connected by a pulley model. The aerodynamic force acting on each wing segment is determined individually using the lift equation with a constant lift coefficient. The particle system model can predict the symmetric deformation of the wing in response to a symmetric actuation of the bridle lines used for depowering the kite (i.e., changing the pitch angle). The model also reproduces the typical twist deformation of the wing in response to an asymmetric line actuation used for steering the kite. The simulated wing geometries are compared with photogrammetric information taken by the onboard video camera of the kite control unit, focusing on the wing during flight. The results demonstrate that a particle system model can accurately predict the geometry of a soft wing at a low computational cost, making it an ideal structural building block for the next generation of soft wing kite models.

Suggested Citation

  • Jelle A. W. Poland & Roland Schmehl, 2023. "Modelling Aero-Structural Deformation of Flexible Membrane Kites," Energies, MDPI, vol. 16(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5264-:d:1190156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fechner, Uwe & van der Vlugt, Rolf & Schreuder, Edwin & Schmehl, Roland, 2015. "Dynamic model of a pumping kite power system," Renewable Energy, Elsevier, vol. 83(C), pages 705-716.
    2. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    2. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    3. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    4. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    5. Sweder Reuchlin & Rishikesh Joshi & Roland Schmehl, 2023. "Sizing of Hybrid Power Systems for Off-Grid Applications Using Airborne Wind Energy," Energies, MDPI, vol. 16(10), pages 1-15, May.
    6. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    7. Liu, Zhe & Zhao, Yi & Zhou, Yuerong & Guan, Faming, 2020. "Modeling, simulation and test results analysis of tethered undersea kite based on bead model," Renewable Energy, Elsevier, vol. 154(C), pages 1314-1326.
    8. Malz, E.C. & Koenemann, J. & Sieberling, S. & Gros, S., 2019. "A reference model for airborne wind energy systems for optimization and control," Renewable Energy, Elsevier, vol. 140(C), pages 1004-1011.
    9. Iván Castro-Fernández & Ricardo Borobia-Moreno & Rauno Cavallaro & Gonzalo Sánchez-Arriaga, 2021. "Three-Dimensional Unsteady Aerodynamic Analysis of a Rigid-Framed Delta Kite Applied to Airborne Wind Energy," Energies, MDPI, vol. 14(23), pages 1-17, December.
    10. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    11. Nelson, Sarah & Allwood, Julian M., 2021. "The technological and social timelines of climate mitigation: Lessons from 12 past transitions," Energy Policy, Elsevier, vol. 152(C).
    12. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    13. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    14. Jiang, Zhiyu & Yang, Limin & Gao, Zhen & Moan, Torgeir, 2022. "Integrated dynamic analysis of a spar floating wind turbine with a hydraulic drivetrain," Renewable Energy, Elsevier, vol. 201(P1), pages 608-623.
    15. Lu, Jintao & Rong, Dan & Lev, Benjamin & Liang, Mengshang & Zhang, Chong & Gao, Yangyang, 2023. "Constraints affecting the promotion of waste incineration power generation project in China: A perspective of improved technology acceptance model," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    16. Geng, D. & Evans, S. & Kishita, Y., 2023. "The identification and classification of energy waste for efficient energy supervision in manufacturing factories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Dylan Eijkelhof & Gabriel Buendía & Roland Schmehl, 2023. "Low- and High-Fidelity Aerodynamic Simulations of Box Wing Kites for Airborne Wind Energy Applications," Energies, MDPI, vol. 16(7), pages 1-19, March.
    18. Yessica Arellano-Prieto & Elvia Chavez-Panduro & Pierluigi Salvo Rossi & Francesco Finotti, 2022. "Energy Storage Solutions for Offshore Applications," Energies, MDPI, vol. 15(17), pages 1-34, August.
    19. Volkan Salma & Roland Schmehl, 2023. "Operation Approval for Commercial Airborne Wind Energy Systems," Energies, MDPI, vol. 16(7), pages 1-23, April.
    20. Malz, E.C. & Verendel, V. & Gros, S., 2020. "Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data," Renewable Energy, Elsevier, vol. 162(C), pages 766-778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5264-:d:1190156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.