IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5236-d1189372.html
   My bibliography  Save this article

Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes

Author

Listed:
  • Ruta Vanaga

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Jānis Narbuts

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Ritvars Freimanis

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Zigmārs Zundāns

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

  • Andra Blumberga

    (Institute of Energy Systems and Environment, Riga Technical University, 1048 Riga, Latvia)

Abstract

To meet the 2050 EU decarbonization goals, there is a need for new and innovative ideas to increase energy efficiency, which includes reducing the energy consumption of buildings and increasing the use of on-site renewable energy sources. One possible solution for achieving efficient thermal energy transition in the building sector is to assign new functionalities to the building envelope. The building envelope can function as a thermal energy storage system, which can help compensate for irregularities in solar energy availability. This can be accomplished by utilizing phase change materials as the energy storage medium in the building envelope. In this paper, two phase change materials with different melting temperatures of 21 °C and 28 °C are compared for their application in a dynamic solar building envelope. Both experimental and numerical studies were conducted within the scope of this study. The laboratory testing involved simulating the conditions of the four seasons through steady-state and dynamic experiments. The performance of the phase change materials was evaluated using a small-scale PASLINK test stand that imitates indoor and outdoor conditions. A numerical model of a small-scale building envelope was created using data from laboratory tests. The purpose of this model was to investigate how the tested phase change materials perform under different climate conditions. The experimental findings show that RT21HC is better at storing thermal energy in the PCM and releasing it into the indoor area than RT28HC. On the other hand, the numerical simulation results demonstrate that RT28HC has an advantage in terms of thermal storage capacity in climates found in Southern Europe, as it prevents overheating of the room.

Suggested Citation

  • Ruta Vanaga & Jānis Narbuts & Ritvars Freimanis & Zigmārs Zundāns & Andra Blumberga, 2023. "Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes," Energies, MDPI, vol. 16(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5236-:d:1189372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    2. Atiq Ur Rehman & Shakil R. Sheikh & Zareena Kausar & Sarah J. McCormack, 2021. "Numerical Simulation of a Novel Dual Layered Phase Change Material Brick Wall for Human Comfort in Hot and Cold Climatic Conditions," Energies, MDPI, vol. 14(13), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    2. Balderrama Prieto, Silvino A. & Sabharwall, Piyush, 2024. "Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor," Applied Energy, Elsevier, vol. 360(C).
    3. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    4. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    5. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. You, Jinfang & Gao, Jintong & Li, Renpeng & Wang, Ruzhu & Xu, Zhenyuan, 2025. "Air-source heat pump assisted absorption heat storage for discharging under low ambient temperature," Applied Energy, Elsevier, vol. 380(C).
    7. Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
    8. Abbas Sahi Shareef & Haider Nadhom Azziz & Ameer Abdul-Salam, 2022. "Techniques for extracting pure water by solar still with Fresnel lens and phase change materials," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(6), pages 45-52, June.
    9. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    10. Niknam, Pouriya H. & Fisher, Robin & Ciappi, Lorenzo & Sciacovelli, Adriano, 2024. "Optimally integrated waste heat recovery through combined emerging thermal technologies: Modelling, optimization and assessment for onboard multi-energy systems," Applied Energy, Elsevier, vol. 366(C).
    11. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    12. Alok Kumar Ray & Dibakar Rakshit & K. Ravi Kumar & Hal Gurgenci, 2021. "A Comparative Study of High-Temperature Latent Heat Storage Systems," Energies, MDPI, vol. 14(21), pages 1-19, October.
    13. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    14. Khader, Mahmoud A. & Ghavami, Mohsen & Al-Zaili, Jafar & Sayma, Abdulnaser I., 2024. "Residential Micro-CHP system with integrated phase change material thermal energy storage," Energy, Elsevier, vol. 300(C).
    15. Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Jeroen Mol & Mina Shahi & Amirhoushang Mahmoudi, 2020. "Numerical Modeling of Thermal Storage Performance of Encapsulated PCM Particles in an Unstructured Packed Bed," Energies, MDPI, vol. 13(23), pages 1-16, December.
    17. Arjuna Nebel & Julián Cantor & Sherif Salim & Amro Salih & Dixit Patel, 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO 2 Emission Restrictions," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    18. Advaith, S. & Parida, Dipti Ranjan & Aswathi, K.T. & Dani, Nikhil & Chetia, Utpal Kumar & Chattopadhyay, Kamanio & Basu, Saptarshi, 2021. "Experimental investigation on single-medium stratified thermal energy storage system," Renewable Energy, Elsevier, vol. 164(C), pages 146-155.
    19. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    20. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5236-:d:1189372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.