IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5006-d1181662.html
   My bibliography  Save this article

Evaluation of the Power Generation Impact for the Mobility of Battery Electric Vehicles

Author

Listed:
  • Javier Rey

    (Department of Project and Construction Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Lázaro V. Cremades

    (Department of Project and Construction Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

Abstract

European institutions have decided to ban the sale of Internal Combustion Vehicles (ICEVs) in the EU from 2035. This opens a possible scenario in which, in the not-too-distant future, all vehicles circulating in Europe are likely to be Battery Electric Vehicles (BEVs). The Spanish vehicle fleet is one of the oldest and has the lowest percentage of BEVs in Europe. The aim of this study is to evaluate the hypothetical scenario in which the current mobility of ICEVs is transformed into BEVs, in the geographical area of the province of Barcelona and in Spain in general. The daily electricity consumption, the required installation capacity of wind and solar photovoltaic energies, and the potential reduction of NO x and particulate matter (PM) emissions are estimated. The daily emission reduction would be about 314 tons of NO x and 17 tons of PM in Spain. However, the estimated investment required in Spain to generate the additional electricity from renewable sources would be enormous (over EUR 25.4 billion), representing, for example, 5.5% of the total national budget in 2022.

Suggested Citation

  • Javier Rey & Lázaro V. Cremades, 2023. "Evaluation of the Power Generation Impact for the Mobility of Battery Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5006-:d:1181662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao, Ruiqing & Ghosh, Prasenjit N. & Khanna, Madhu & Wang, Weiwei & Rong, Jian, 2019. "Effect of wind turbines on bird abundance: A national scale analysis based on fixed effects models," Energy Policy, Elsevier, vol. 132(C), pages 357-366.
    2. Li, Mengyu & Zhang, Xiongwen & Li, Guojun, 2016. "A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis," Energy, Elsevier, vol. 94(C), pages 693-704.
    3. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.
    4. Guy Fournier & Adrian Boos & Ralf Wörner & Ines Jaroudi & Inna Morozova & Eliane Horschutz Nemoto, 2020. "Substituting individual mobility by mobility on demand using autonomous vehicles - a sustainable assessment simulation of Berlin and Stuttgart," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 20(4), pages 369-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Barsali & Massimo Ceraolo & Gianluca Pasini & Davide Poli, 2024. "Managing BEV Charge to Obtain a Positive Impact on a National Power System," Energies, MDPI, vol. 17(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    3. Han, Zhongliang & Xu, Nan & Chen, Hong & Huang, Yanjun & Zhao, Bin, 2018. "Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis," Applied Energy, Elsevier, vol. 213(C), pages 639-657.
    4. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    5. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    6. He, X. & Wang, F. & Wallington, T.J. & Shen, W. & Melaina, M.W. & Kim, H.C. & De Kleine, R. & Lin, T. & Zhang, S. & Keoleian, G.A. & Lu, X. & Wu, Y., 2021. "Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Khaled M. A. Salim & Ruhanita Maelah & Hawa Hishamuddin & Amizawati Mohd Amir & Mohd Nizam Ab Rahman, 2022. "Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    8. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Soria Alcaide, Rafael, 2023. "Carbon footprint of battery electric vehicles considering average and marginal electricity mix," Energy, Elsevier, vol. 268(C).
    9. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    10. Luca Cattani & Matteo Malavasi & Fabio Bozzoli & Valerio D’Alessandro & Luca Giammichele, 2023. "Experimental Analysis of an Innovative Electrical Battery Thermal Management System," Energies, MDPI, vol. 16(13), pages 1-17, June.
    11. Giuseppe Aiello & Salvatore Quaranta & Rosalinda Inguanta & Antonella Certa & Mario Venticinque, 2024. "A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty," Energies, MDPI, vol. 17(6), pages 1-19, March.
    12. Li, Xiangrong & Zhu, Shaoying & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2020. "Kano-based mapping of innovation strategies for renewable energy alternatives using hybrid interval type-2 fuzzy decision-making approach," Energy, Elsevier, vol. 211(C).
    13. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Arif Ahmed & Evangelos E. Pompodakis & Yiannis Katsigiannis & Emmanuel S. Karapidakis, 2024. "Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece," Energies, MDPI, vol. 17(8), pages 1-17, April.
    15. Muhammad Amin & Hamad Hussain Shah & Bilal Bashir & Muhammad Azhar Iqbal & Umer Hameed Shah & Muhammad Umair Ali, 2023. "Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review," Energies, MDPI, vol. 16(11), pages 1-25, May.
    16. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    17. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    18. Deng, Yelin & Li, Jianyang & Li, Tonghui & Zhang, Jingyi & Yang, Fan & Yuan, Chris, 2017. "Life cycle assessment of high capacity molybdenum disulfide lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 123(C), pages 77-88.
    19. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5006-:d:1181662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.