IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4214-d1151536.html
   My bibliography  Save this article

Study on the Combustion Performance and Industrial Tests of Coke Breeze in Shougang Jingtang Blast Furnace

Author

Listed:
  • Yuzhuo Yang

    (Manufacturing Department, Shougang Jingtang United Iron & Steel Co., Ltd., Tangshan 063210, China)

  • Junyi Wu

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Shengtao Liu

    (Manufacturing Department, Shougang Jingtang United Iron & Steel Co., Ltd., Tangshan 063210, China)

  • Guangze Kan

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jianlong Wu

    (Jingtang Technology Center, Technology Research Institute, Shougang Jingtang United Iron & Steel Co., Ltd., Tangshan 063210, China)

  • Shengli Wu

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Guangwei Wang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

In this study, the feasibility indicators of the injection of coke breeze for blast furnaces (BFs) were tested. Experiments were conducted on the combustion behavior of coke breeze at different particle sizes, and the effects of ratio of coke breeze in pulverized coal on the combustion performance of blends were studied. On the basis of the above experiments, industrial tests involving injecting coke breeze after milling were carried out in 3# BF of Shougang Jingtang. The results show that most of the coke breeze particle sizes were distributed above 1 mm. The grindability and combustion performance are poor, so the material needs to be ground before mixing with pulverized coal. The best combustibility can be obtained by using a particle size of less than 8.74 μm of coke breeze in the injection. With the increase in the coke breeze ratio, the combustion performance of blended coal worsened; the negative effects of coke breeze can be improved by increasing the proportion of bituminous coal. According to the results of industrial tests, 8% coke breeze in blends had no negative effect on the smelting state, and the output of the BF increased slightly. Industrial tests proved that coke breeze can partly replace anthracite for BF injecting, which reduced the cost of hot metal while realizing the high value-added resource utilization of coke breeze.

Suggested Citation

  • Yuzhuo Yang & Junyi Wu & Shengtao Liu & Guangze Kan & Jianlong Wu & Shengli Wu & Guangwei Wang, 2023. "Study on the Combustion Performance and Industrial Tests of Coke Breeze in Shougang Jingtang Blast Furnace," Energies, MDPI, vol. 16(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4214-:d:1151536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    2. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    3. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    4. Wang, Qi & Wang, Enlu & Chionoso, Oguga Paul, 2022. "Numerical simulation of the synergistic effect of combustion for the hydrochar /coal blends in a blast furnace," Energy, Elsevier, vol. 238(PB).
    5. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    6. Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
    7. Liu, Quan & Zhang, Guanyu & Kong, Ge & Liu, Mingyang & Cao, Tianqi & Guo, Zhirui & Zhang, Xuesong & Han, Lujia, 2023. "Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 216(C).
    8. Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
    9. Yuchiao Lu & Hanmin Yang & Andrey V. Karasev & Chuan Wang & Pär G. Jönsson, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials," Sustainability, MDPI, vol. 14(15), pages 1-27, August.
    10. Eunhye Song & Seyong Park & Seongkuk Han & Eusil Lee & Ho Kim, 2022. "Characteristics of Hydrothermal Carbonization Hydrochar Derived from Cattle Manure," Energies, MDPI, vol. 15(23), pages 1-14, December.
    11. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    12. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    13. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    14. Rhea Gallant & Aitazaz A. Farooque & Sophia He & Kang Kang & Yulin Hu, 2022. "A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    15. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    16. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    17. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
    18. Cheng, Chen & Guo, Qinghua & Ding, Lu & Raheem, Abdul & He, Qing & Shiung Lam, Su & Yu, Guangsuo, 2022. "Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: Parametric optimization using response surface methodology," Applied Energy, Elsevier, vol. 327(C).
    19. Tova Jarnerud & Andrey V. Karasev & Chuan Wang & Frida Bäck & Pär G. Jönsson, 2021. "Utilization of Organic Mixed Biosludge from Pulp and Paper Industries and Green Waste as Carbon Sources in Blast Furnace Hot Metal Production," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
    20. Samuel Carrasco & Ernesto Pino-Cortés & Andrés Barra-Marín & Alejandro Fierro-Gallegos & Marcelo León, 2022. "Use of Hydrochar Produced by Hydrothermal Carbonization of Lignocellulosic Biomass for Thermal Power Plants in Chile: A Techno-Economic and Environmental Study," Sustainability, MDPI, vol. 14(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4214-:d:1151536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.