IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221019708.html
   My bibliography  Save this article

Numerical simulation of the synergistic effect of combustion for the hydrochar /coal blends in a blast furnace

Author

Listed:
  • Wang, Qi
  • Wang, Enlu
  • Chionoso, Oguga Paul

Abstract

The practice of injecting a coal/biomass blend can alleviate the pressure on carbon emissions and energy of ironmaking blast furnaces (BFs). In this paper, corn stalks treated by hydrothermal carbonization (HTC) are used as raw materials to eliminate the harm of alkali metals in the ash. The overall performance of individual behavior of the hydrochar, coal, and their blends are analyzed over the raceway with special reference to gas flow, temperature, species, and combustion efficiency. The results show that the hydrochar with higher volatile content is faster to devolatilize, showing a higher CO2 content at the nozzle tip, and reaching a higher burnout in the raceway. The addition of hydrochar to coal can improve the overall flow and combustion performance of the blends. The simulated value is higher than the calculated value, indicating the synergistic effect has existed. When the proportion of the hydrochar is 75% in blends, the synergistic effect is most obvious. The model provides an effective tool for the design of coal/biomass blends.

Suggested Citation

  • Wang, Qi & Wang, Enlu & Chionoso, Oguga Paul, 2022. "Numerical simulation of the synergistic effect of combustion for the hydrochar /coal blends in a blast furnace," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019708
    DOI: 10.1016/j.energy.2021.121722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zixiang & Miao, Zhengqing & Zhou, Yan & Wen, Shurong & Li, Jiangtao, 2018. "Influence of increased primary air ratio on boiler performance in a 660 MW brown coal boiler," Energy, Elsevier, vol. 152(C), pages 804-817.
    2. Zhuo, Yuting & Shen, Yansong, 2020. "Three-dimensional transient modelling of coal and coke co-combustion in the dynamic raceway of ironmaking blast furnaces," Applied Energy, Elsevier, vol. 261(C).
    3. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    4. Wang, Qi & Wang, Enlu & Li, Kai & Husnain, Naveed & Li, Deli, 2020. "Synergistic effects and kinetics analysis of biochar with semi-coke during CO2 co-gasification," Energy, Elsevier, vol. 191(C).
    5. Wang, Guangwei & Zhang, Jianliang & Zhang, Guohua & Ning, Xiaojun & Li, Xinyu & Liu, Zhengjian & Guo, Jian, 2017. "Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends," Energy, Elsevier, vol. 131(C), pages 27-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qi & Wang, Enlu & An, Qi & Chionoso, Oguga Paul, 2023. "CFD study of bio-syngas and coal co-injection in a blast furnace with double lance," Energy, Elsevier, vol. 263(PD).
    2. Yuchiao Lu & Hanmin Yang & Andrey V. Karasev & Chuan Wang & Pär G. Jönsson, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials," Sustainability, MDPI, vol. 14(15), pages 1-27, August.
    3. Zhang, Cuiliu & Zhang, Jianliang & Zheng, Anyang & Xu, Runsheng & Jia, Guoli & Zhu, Jinfeng, 2023. "Effects of hydrogen-rich fuel injection on the states of the raceway in blast furnace," Energy, Elsevier, vol. 274(C).
    4. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    2. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    3. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    4. Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
    5. Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
    6. Diao, Rui & Li, Shanshan & Deng, Jingjing & Zhu, Xifeng, 2021. "Interaction and kinetic analysis of co-gasification of bituminous coal with walnut shell under CO2 atmosphere: Effect of inorganics and carbon structures," Renewable Energy, Elsevier, vol. 173(C), pages 177-187.
    7. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
    8. Heydar Maddah & Milad Sadeghzadeh & Mohammad Hossein Ahmadi & Ravinder Kumar & Shahaboddin Shamshirband, 2019. "Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    9. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    10. Fan, Xiangyu & Liu, Yang & Wang, Mingdeng & Li, Chao & Zheng, Yajie & Liu, Yang & Zhong, Xiangyun & Xu, Guozhong & Zhang, Yaru & Feng, Yifei & Bai, Bin & Bai, Jinfeng, 2023. "Production of highly reactive cokes by adding alkali metals and alkaline earth metals and their effect mechanism," Energy, Elsevier, vol. 284(C).
    11. da Silva Filho, Valdemar Francisco & Batistella, Luciane & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Althoff, Christine Albrecht & Moreira, Regina de Fátima Peralta Muniz & José,, 2019. "Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator," Renewable Energy, Elsevier, vol. 141(C), pages 402-410.
    12. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    13. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    14. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    15. Rhea Gallant & Aitazaz A. Farooque & Sophia He & Kang Kang & Yulin Hu, 2022. "A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    16. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    17. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).
    18. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    19. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    20. Wang, Qi & Wang, Enlu & Li, Kai & Husnain, Naveed & Li, Deli, 2020. "Synergistic effects and kinetics analysis of biochar with semi-coke during CO2 co-gasification," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.