IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2854-d793261.html
   My bibliography  Save this article

Investigation of Thermal and Energy Performance of the Thermal Bridge Breaker for Reinforced Concrete Residential Buildings

Author

Listed:
  • Mi-Yeon Kim

    (SH Urban Research Center, Seoul Housing & Communities Corporation, Seoul 06336, Korea)

  • Hyung-Geun Kim

    (SH Urban Research Center, Seoul Housing & Communities Corporation, Seoul 06336, Korea)

  • Jin-Sung Kim

    (SH Urban Research Center, Seoul Housing & Communities Corporation, Seoul 06336, Korea)

  • Goopyo Hong

    (Department of Architectural Engineering, College of Engineering, Kangwon National University, Samcheok 25913, Korea)

Abstract

Thermal bridges in building envelopes can cause significant heat loss and heat gain. In this study, the developed thermal bridge breaker was applied to an interior insulation finishing system in residential buildings to minimize the thermal bridges in building envelopes. To investigate the thermal and energy performance of the developed thermal bridge breaker, the surface temperatures and heat flow at the wall and floor junctions were predicted using Physibel. In addition, the heating and cooling energy consumption in a residential building was analyzed by EnergyPlus. As a result, the use of the thermal bridge breaker can minimize the effective thermal transmittance in the building envelope system. Moreover, when the building envelopes were equipped with the thermal bridge breaker, the heating and cooling load through the exterior walls was decreased by 15–27%. Thus, the thermal bridge breaker can play an important role in minimizing the heat loss and occurrence of condensation in building envelopes.

Suggested Citation

  • Mi-Yeon Kim & Hyung-Geun Kim & Jin-Sung Kim & Goopyo Hong, 2022. "Investigation of Thermal and Energy Performance of the Thermal Bridge Breaker for Reinforced Concrete Residential Buildings," Energies, MDPI, vol. 15(8), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2854-:d:793261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Wu & Skye, Harrison M., 2021. "Residential net-zero energy buildings: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    3. Wang, Ran & Feng, Wei & Wang, Lan & Lu, Shilei, 2021. "A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union," Energy, Elsevier, vol. 215(PA).
    4. Kim, Chul, 2021. "A review of the deployment programs, impact, and barriers of renewable energy policies in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Janusz Adamczyk & Robert Dylewski, 2020. "Ecological and Economic Benefits of the “Medium” Level of the Building Thermo-Modernization: A Case Study in Poland," Energies, MDPI, vol. 13(17), pages 1-14, September.
    6. Yoon, Jong-Han & Sim, Kwang-ho, 2015. "Why is South Korea's renewable energy policy failing? A qualitative evaluation," Energy Policy, Elsevier, vol. 86(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    2. Shabbir, Noman & Kütt, Lauri & Raja, Hadi A. & Jawad, Muhammad & Allik, Alo & Husev, Oleksandr, 2022. "Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia," Energy, Elsevier, vol. 253(C).
    3. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    4. Despoina Antypa & Foteini Petrakli & Anastasia Gkika & Pamela Voigt & Alexander Kahnt & Robert Böhm & Jan Suchorzewski & Andreia Araújo & Susana Sousa & Elias P. Koumoulos, 2022. "Life Cycle Assessment of Advanced Building Components towards NZEBs," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    5. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Cheteni, Priviledge, 2017. "Sustainability development: Biofuels in agriculture," MPRA Paper 80969, University Library of Munich, Germany, revised 24 Jun 2017.
    7. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Saptarshi Das & Mehrdad Ehsani, 2022. "An Adaptable Net Zero Model: Energy Analysis of a Monitored Case Study," Energies, MDPI, vol. 15(11), pages 1-24, May.
    8. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    9. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    10. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Kim, Jiwon & Choi, Hyunho & Kim, Samuel & Yu, Jaecheul, 2018. "Feasibility analysis of introducing renewable energy systems in environmental basic facilities: A case study in Busan, South Korea," Energy, Elsevier, vol. 150(C), pages 702-708.
    12. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    13. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    14. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    15. Quddus Tushar & Guomin Zhang & Satheeskumar Navaratnam & Muhammed A. Bhuiyan & Lei Hou & Filippo Giustozzi, 2023. "A Review of Evaluative Measures of Carbon-Neutral Buildings: The Bibliometric and Science Mapping Analysis towards Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    16. Daphne Ngar-yin Mah & Darren Man-wai Cheung, 2020. "Conceptualizing Niche–Regime Dynamics of Energy Transitions from a Political Economic Perspective: Insights from Community-Led Urban Solar in Seoul," Sustainability, MDPI, vol. 12(12), pages 1-28, June.
    17. Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
    18. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    19. Sung, Bongsuk, 2019. "Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry," Energy Policy, Elsevier, vol. 132(C), pages 1333-1344.
    20. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2854-:d:793261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.