IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2757-d790045.html
   My bibliography  Save this article

Examination of Using Aluminum-Foam/Finned-Tube Beds Packed with Maxsorb III for Adsorption Ice Production System

Author

Listed:
  • Mahmoud Badawy Elsheniti

    (Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
    Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Mohamed Shaaban Eissa

    (Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Hany Al-Ansary

    (Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
    K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia)

  • Jamel Orfi

    (Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
    K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia)

  • Osama Elsamni

    (Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Abdelrahman El-Leathy

    (Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
    Mechanical Power Engineering Department, Faculty of Engineering, El-Mataria, Helwan University, Cairo 11718, Egypt)

Abstract

Producing ice using adsorption systems can represent a sustainable solution and meet the recent global environmental regulations as they use natural refrigerants and can be driven by solar energy. However, the beds used in these systems still have low thermal and adsorption characteristics. This study investigates numerically the use of an emerging aluminum foamed bed packed with advanced Maxsorb adsorbent in a two-bed adsorption system and reports cases of performance improvements compared to the classical finned-tube based system used to produce ice. A comprehensive 2-D transient pressure distribution model for the two beds was developed and validated. The model considers the temporal and spatial variations of the two beds’ parameters, while the effect of the thermal mass and heat transfer effectiveness of the condenser and evaporator components are imitated at the boundary conditions for bed openings using two zero-dimensional models. The results show the interrelated effects of varying the cycle times from 400 s to 1200 s with 2, 5, and 10 mm foam thicknesses/fin heights on the overall performance of both systems. The Al-foam based system demonstrated the performance superiority at a 2 mm foam thickness with maximum ice production of 49 kg ice /kg ads in 8 h, an increase of 26.6% over the counterpart finned-tube based system at a 400 s cycle time. The best COP of 0.366 was attained at a 5 mm foam thickness and 1200 s with an increase of 26.7%. The effective uptake of the Al-foam based system was reduced dramatically at a 10 mm foam thickness, which deteriorated the system performance.

Suggested Citation

  • Mahmoud Badawy Elsheniti & Mohamed Shaaban Eissa & Hany Al-Ansary & Jamel Orfi & Osama Elsamni & Abdelrahman El-Leathy, 2022. "Examination of Using Aluminum-Foam/Finned-Tube Beds Packed with Maxsorb III for Adsorption Ice Production System," Energies, MDPI, vol. 15(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2757-:d:790045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Sosnowski, 2019. "Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology," Energies, MDPI, vol. 12(24), pages 1-19, December.
    2. Jing, Hu & Exell, R.H.B., 1994. "Simulation and sensitivity analysis of an intermittent solar-powered charcoal/methanol refrigerator," Renewable Energy, Elsevier, vol. 4(1), pages 133-149.
    3. Mahmoud Badawy Elsheniti & Osama Elsamni & Raya K. Al-dadah & Sa'ad Mahmoud & Eman Elsayed & Khaled Saleh, 2018. "Adsorption Refrigeration Technologies," Chapters, in: Chaouki Ghenai & Tareq Salameh (ed.), Sustainable Air Conditioning Systems, IntechOpen.
    4. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    5. Rupa, Mahua Jahan & Pal, Animesh & Saha, Bidyut Baran, 2020. "Activated carbon-graphene nanoplatelets based green cooling system: Adsorption kinetics, heat of adsorption, and thermodynamic performance," Energy, Elsevier, vol. 193(C).
    6. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    7. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    8. Mauro Luberti & Chiara Di Santis & Giulio Santori, 2020. "Ammonia/Ethanol Mixture for Adsorption Refrigeration," Energies, MDPI, vol. 13(4), pages 1-18, February.
    9. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Badawy Elsheniti & Abdulrahman AlRabiah & Hany Al-Ansary & Zeyad Almutairi & Jamel Orfi & Abdelrahman El-Leathy, 2023. "Performance Assessment of an Ice-Production Hybrid Solar CPV/T System Combining Both Adsorption and Vapor-Compression Refrigeration Systems," Sustainability, MDPI, vol. 15(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.
    3. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    4. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    5. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    6. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    7. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    8. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    9. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    10. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    11. Gao, Peng & Wei, Xinyu & Wang, Liwei & Zhu, Fangqi, 2022. "Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery," Energy, Elsevier, vol. 244(PB).
    12. Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.
    13. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).
    14. Junhyeok Yong & Junggyun Ham & Ohkyung Kwon & Honghyun Cho, 2021. "Experimental Investigation of the Heat Transfer Characteristics of Plate Heat Exchangers Using LiBr/Water as Working Fluid," Energies, MDPI, vol. 14(20), pages 1-15, October.
    15. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    17. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    18. Kim, Dong-Seon & Chang, Young-Soo & Lee, Dae-Young, 2018. "Modelling of an adsorption chiller with adsorbent-coated heat exchangers: Feasibility of a polymer-water adsorption chiller," Energy, Elsevier, vol. 164(C), pages 1044-1061.
    19. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    20. Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2757-:d:790045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.