IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2752-d789869.html
   My bibliography  Save this article

Heat Transfer of Near Pseudocritical Nitrogen in Helically Coiled Tube for Cryogenic Energy Storage

Author

Listed:
  • Yi Wang

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Tiejun Lu

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Xianglei Liu

    (School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Adriano Sciacovelli

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Yongliang Li

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

This paper investigates the cryogenic heat transfer phenomena of nitrogen flowing in helically coiled tubes under the combined effects of pseudocritical conditions, buoyancy, and coil curvature. The ultimate goal was to design optimum heat exchangers for liquid air energy storage. Local heat transfer coefficients were evaluated peripherally across tube cross sections. The pressure, mass flux, and heat flux effects on the heat transfer were examined. The dual effect of buoyancy and coil curvature on heat transfer coefficients was interpreted via a dimensionless number Ψ, which denotes a ratio between the two effects. Results reveal that the heat transfer coefficients increase with increasing mass flux but decreasing pressure and heat flux. The buoyancy effect dominates the heat transfer at fluid temperatures below the pseudocritical temperature (e.g., −146.3 °C at 35 bar), while the coil curvature-induced centrifugal effect dominates at higher temperatures. The heat transfer coefficients for the helical coil were approximately 13% lower compared with those in straight tube at fluid temperatures below the pseudocritical temperature, but their difference shrinks (<±6%) at higher temperatures. The reason is that the benefits of coil curvature and improved turbulent mixing on heat transfer are counteracted by the thermophysical property variation and buoyancy effect.

Suggested Citation

  • Yi Wang & Tiejun Lu & Xianglei Liu & Adriano Sciacovelli & Yongliang Li, 2022. "Heat Transfer of Near Pseudocritical Nitrogen in Helically Coiled Tube for Cryogenic Energy Storage," Energies, MDPI, vol. 15(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2752-:d:789869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Negoescu, Ciprian Constantin & Li, Yongliang & Al-Duri, Bushra & Ding, Yulong, 2017. "Heat transfer behaviour of supercritical nitrogen in the large specific heat region flowing in a vertical tube," Energy, Elsevier, vol. 134(C), pages 1096-1106.
    2. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.
    3. Josip Batista & Anica Trp & Kristian Lenic, 2022. "Heat Transfer Enhancement of Crossflow Air-to-Water Fin-and-Tube Heat Exchanger by Using Delta-Winglet Type Vortex Generators," Energies, MDPI, vol. 15(6), pages 1-25, March.
    4. Qinghua Yu & Yuxiang Peng & Ciprian Constantin Negoescu & Yi Wang & Yongliang Li, 2021. "Study on Convective Heat Transfer of Supercritical Nitrogen in a Vertical Tube for Liquid Air Energy Storage," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Christopher S. Brown & Nigel J. Cassidy & Stuart S. Egan & Dan Griffiths, 2022. "Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK," Energies, MDPI, vol. 15(6), pages 1-17, March.
    6. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Liu, Xinxin & Zhang, Yadong & Dang, Chaobin, 2019. "The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect," Energy, Elsevier, vol. 176(C), pages 765-777.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinxin & Xu, Xiaoxiao & Liu, Chao & Bai, Wanjin & Dang, Chaobin, 2018. "Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles," Energy, Elsevier, vol. 147(C), pages 1-14.
    2. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    3. Xinxin Liu & Shuoshuo Li & Liang Liu & Chao He & Zhuang Sun & Faruk Özdemir & Muhammad Aziz & Po-Chih Kuo, 2022. "Research Progress on Convective Heat Transfer Characteristics of Supercritical Fluids in Curved Tube," Energies, MDPI, vol. 15(22), pages 1-23, November.
    4. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    5. Joy, Jubil & Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2022. "Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure," Energy, Elsevier, vol. 260(C).
    6. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Liu, Xinxin & Zhang, Yadong & Dang, Chaobin, 2019. "The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect," Energy, Elsevier, vol. 176(C), pages 765-777.
    7. Xiaojing Zhu & Ruizeng Zhang & Xiao Yu & Maoguo Cao & Yongxiang Ren, 2020. "Numerical Study on the Gravity Effect on Heat Transfer of Supercritical CO 2 in a Vertical Tube," Energies, MDPI, vol. 13(13), pages 1-20, July.
    8. Wei Wang & Liang Ding & Fangming Han & Yong Shuai & Bingxi Li & Bengt Sunden, 2022. "Parametric Study on Thermo-Hydraulic Performance of NACA Airfoil Fin PCHEs Channels," Energies, MDPI, vol. 15(14), pages 1-15, July.
    9. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    10. Tian, Ran & Xu, Yunting & Shi, Lin & Song, Panpan & Wei, Mingshan, 2020. "Mixed convection heat transfer of supercritical pressure R1234yf in horizontal flow: Comparison study as alternative to R134a in organic Rankine cycles," Energy, Elsevier, vol. 205(C).
    11. Yao, Yecheng & Zhu, Qi’an & Li, Zhouhang, 2020. "Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition," Energy, Elsevier, vol. 195(C).
    12. Qinghua Yu & Yuxiang Peng & Ciprian Constantin Negoescu & Yi Wang & Yongliang Li, 2021. "Study on Convective Heat Transfer of Supercritical Nitrogen in a Vertical Tube for Liquid Air Energy Storage," Energies, MDPI, vol. 14(22), pages 1-20, November.
    13. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    14. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    15. Xu, Yong & Yi, Zhengming, 2023. "Effect of flow direction on heat transfer characteristics of supercritical CO2 in a heating serpentine micro-tube," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2752-:d:789869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.