IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics036054422501148x.html
   My bibliography  Save this article

Unlocking temperature reduction of cogeneration district heating networks through automated substation retrofit

Author

Listed:
  • Sollich, Martin
  • Van Belle, Vincent
  • Wack, Yannick
  • Salenbien, Robbe
  • Baelmans, Martine
  • Blommaert, Maarten

Abstract

To achieve decarbonization targets, the network operating temperatures of district heating networks need to be lowered to increase efficiency in heat generation and distribution. However, reducing operating temperatures in existing networks can present challenges with respect to the required heat and flow transfer through the substations and network pipes. These challenges should be alleviated to enable the desired temperature reduction and increased energy efficiency. To assist herein, an automated retrofitting methodology is introduced, which suggests the optimal retrofit for existing networks by leveraging mathematical optimization. The installation choice of a supplementary heat exchanger in the substations is optimized to enable network temperature reduction in a cost-optimal way. The proposed methodology is applied to a representative 3rd generation network in Belgium, where the suggested retrofits would allow an optimal temperature reduction from 100°C to 84°C and a cost reduction for the network operator of 24.6%. The paper highlights how the optimization-supported retrofitting methodology is able to simultaneously account for the different aspects influencing the retrofitting decision, such as the required consumer temperature and local retrofitting costs. Thereby, the paper emphasizes the advantage of using the proposed holistic and automated mathematical optimization approach, instead of rule-based approaches, to determine necessary network retrofits.

Suggested Citation

  • Sollich, Martin & Van Belle, Vincent & Wack, Yannick & Salenbien, Robbe & Baelmans, Martine & Blommaert, Maarten, 2025. "Unlocking temperature reduction of cogeneration district heating networks through automated substation retrofit," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501148x
    DOI: 10.1016/j.energy.2025.135506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501148X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wack, Yannick & Sollich, Martin & Salenbien, Robbe & Diriken, Jan & Baelmans, Martine & Blommaert, Maarten, 2024. "A multi-period topology and design optimization approach for district heating networks," Applied Energy, Elsevier, vol. 367(C).
    2. Wack, Yannick & Baelmans, Martine & Salenbien, Robbe & Blommaert, Maarten, 2023. "Economic topology optimization of District Heating Networks using a pipe penalization approach," Energy, Elsevier, vol. 264(C).
    3. Merlet, Yannis & Baviere, Roland & Vasset, Nicolas, 2023. "Optimal retrofit of district heating network to lower temperature levels," Energy, Elsevier, vol. 282(C).
    4. Christopher S. Brown & Nigel J. Cassidy & Stuart S. Egan & Dan Griffiths, 2022. "Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK," Energies, MDPI, vol. 15(6), pages 1-17, March.
    5. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    6. Jangsten, M. & Kensby, J. & Dalenbäck, J.-O. & Trüschel, A., 2017. "Survey of radiator temperatures in buildings supplied by district heating," Energy, Elsevier, vol. 137(C), pages 292-301.
    7. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    8. Sollich, Martin & Wack, Yannick & Salenbien, Robbe & Blommaert, Maarten, 2025. "Decarbonization of existing heating networks through optimal producer retrofit and low-temperature operation," Applied Energy, Elsevier, vol. 378(PA).
    9. Kevin Sartor, 2017. "Simulation Models to Size and Retrofit District Heating Systems," Energies, MDPI, vol. 10(12), pages 1-14, December.
    10. Xu, Han & Zhang, Lu & Wang, Xuanbo & Han, Baocheng & Luo, Zhengyuan & Bai, Bofeng, 2024. "Improved genetic algorithm for pipe diameter optimization of an existing large-scale district heating network," Energy, Elsevier, vol. 304(C).
    11. Polyvianchuk, Andrii & Semenenko, Roman & Kapustenko, Petro & Klemeš, Jiří Jaromír & Arsenyeva, Olga, 2023. "The efficiency of innovative technologies for transition to 4th generation of district heating systems in Ukraine," Energy, Elsevier, vol. 263(PD).
    12. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2024. "Exploring opportunities for temperature reduction in existing district heating infrastructures," Energy, Elsevier, vol. 302(C).
    13. Blommaert, Maarten & Wack, Y. & Baelmans, M., 2020. "An adjoint optimization approach for the topological design of large-scale district heating networks based on nonlinear models," Applied Energy, Elsevier, vol. 280(C).
    14. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
    15. Salenbien, R. & Wack, Y. & Baelmans, M. & Blommaert, M., 2023. "Geographically informed automated non-linear topology optimization of district heating networks," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Han & Zhang, Lu & Wang, Xuanbo & Han, Baocheng & Luo, Zhengyuan & Bai, Bofeng, 2024. "Improved genetic algorithm for pipe diameter optimization of an existing large-scale district heating network," Energy, Elsevier, vol. 304(C).
    2. Salenbien, R. & Wack, Y. & Baelmans, M. & Blommaert, M., 2023. "Geographically informed automated non-linear topology optimization of district heating networks," Energy, Elsevier, vol. 283(C).
    3. Sollich, Martin & Wack, Yannick & Salenbien, Robbe & Blommaert, Maarten, 2025. "Decarbonization of existing heating networks through optimal producer retrofit and low-temperature operation," Applied Energy, Elsevier, vol. 378(PA).
    4. Socci, Luca & Rocchetti, Andrea & Verzino, Antonio & Zini, Andrea & Talluri, Lorenzo, 2024. "Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy," Energy, Elsevier, vol. 313(C).
    5. Munćan, Vladimir & Mujan, Igor & Macura, Dušan & Anđelković, Aleksandar S., 2024. "The state of district heating and cooling in Europe - A literature-based assessment," Energy, Elsevier, vol. 304(C).
    6. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    7. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Björkstam, Maximilian & Lahdelma, Risto, 2024. "Dynamic thermal simulation of a tree-shaped district heating network based on discrete event simulation," Energy, Elsevier, vol. 313(C).
    8. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
    9. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    10. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    11. Bogdanovics, Raimonds & Zemitis, Jurgis & Zajacs, Aleksandrs & Borodinecs, Anatolijs, 2024. "Small-scale district heating system as heat storage for decentralized solar thermal collectors during non-heating period," Energy, Elsevier, vol. 298(C).
    12. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    13. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    15. Buonomano, A. & Forzano, C. & Mongibello, L. & Palombo, A. & Russo, G., 2024. "Optimising low-temperature district heating networks: A simulation-based approach with experimental verification," Energy, Elsevier, vol. 304(C).
    16. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    17. Ayou, Dereje S. & Wardhana, Muhammad Fa'iq Vidi & Coronas, Alberto, 2023. "Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates," Energy, Elsevier, vol. 268(C).
    18. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2024. "Passivity-based control of fluid flow networks with capacitance," Energy, Elsevier, vol. 299(C).
    19. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    20. Erica Corradi & Mosè Rossi & Alice Mugnini & Anam Nadeem & Gabriele Comodi & Alessia Arteconi & Danilo Salvi, 2021. "Energy, Environmental, and Economic Analyses of a District Heating (DH) Network from Both Thermal Plant and End-Users’ Prospective: An Italian Case Study," Energies, MDPI, vol. 14(22), pages 1-25, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501148x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.