IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2715-d788761.html
   My bibliography  Save this article

Energy Optimization in a Paper Mill Enabled by a Three-Site Energy Cooperation

Author

Listed:
  • Alexander Hedlund

    (FSCN, Faculty of Science, Technology and Media, Campus Sundsvall, Mid Sweden University, 851 70 Sundsvall, Sweden
    FrontWay AB, 602 33 Norrköping, Sweden)

  • Olof Björkqvist

    (FSCN, Faculty of Science, Technology and Media, Campus Sundsvall, Mid Sweden University, 851 70 Sundsvall, Sweden)

  • Anders Nilsson

    (FrontWay AB, 602 33 Norrköping, Sweden)

  • Per Engstrand

    (FSCN, Faculty of Science, Technology and Media, Campus Sundsvall, Mid Sweden University, 851 70 Sundsvall, Sweden)

Abstract

Although there are opportunities to reduce electrical energy demand in unit processes of mechanical pulp-based paper and paperboard production, this may not be financially beneficial. This is generally because energy optimization opportunities connected to reduced refiner electricity demand in mechanical pulping systems also results in less steam available for the drying of the paper. As modern high consistency refiner systems produce approximately one ton of steam for each MWh of electricity when producing one ton of pulp, a reduction in electric energy demand leads to increased fuel demand in steam boilers to compensate for the steam shortage. In this study, we investigated what the financial and environmental situation would look like if we were to expand the system border from a paper mill to a larger system consisting of a mechanical pulp-based paper or paperboard mill, a district heating system with an incineration boiler and a chemical pulp mill. Mechanical pulp production has a wood to product yield of >90%, a high electric energy demand to separate woodchips to pulp and is a net producer of heat and steam while chemical pulp-based production has a wood to product yield of 50%, a low electric energy demand and is a net heat and electricity producer due to the combustion of dissolved wood polymers. The aim of this research is to create useful and robust models of how to use excess heat from certain industry sites to cover the steam shortage in other industry sites by means of utilizing and optimizing the district heating systems connecting these sites. For this purpose, we used a simulation tool which dynamically allows us to evaluate different scenarios. Our results shows that there is great potential to reduce both carbon dioxide emissions and production costs for industry sites and society by means of these tools.

Suggested Citation

  • Alexander Hedlund & Olof Björkqvist & Anders Nilsson & Per Engstrand, 2022. "Energy Optimization in a Paper Mill Enabled by a Three-Site Energy Cooperation," Energies, MDPI, vol. 15(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2715-:d:788761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nigel Roome, 2001. "Conceptualizing and studying the contribution of networks in environmental management and sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 10(2), pages 69-76, March.
    2. Huijuan Dong & Zuoxi Liu & Yong Geng & Tsuyoshi Fujita & Minoru Fujii & Lu Sun & Liming Zhang, 2018. "Evaluating Environmental Performance of Industrial Park Development: The Case of Shenyang," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1402-1412, December.
    3. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    4. Júlia Wahrlich & Flávio José Simioni, 2019. "Industrial symbiosis in the forestry sector: A case study in southern Brazil," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1470-1482, December.
    5. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    6. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    7. Lynda Aissani & Antoine Lacassagne & Jean‐Baptiste Bahers & Samuel Le Féon, 2019. "Life cycle assessment of industrial symbiosis: A critical review of relevant reference scenarios," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 972-985, August.
    8. Wennan Zhang & Jie He & Per Engstrand & Olof Björkqvist, 2015. "Economic Evaluation on Bio-Synthetic Natural Gas Production Integrated in a Thermomechanical Pulp Mill," Energies, MDPI, vol. 8(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosaura Castrillón Mendoza & Javier M. Rey Hernández & Eloy Velasco Gómez & Julio F. San José Alonso & Francisco J. Rey Martínez, 2018. "Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of," Energies, MDPI, vol. 12(1), pages 1-20, December.
    2. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    3. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    4. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    5. Tina Wiegand & Martin Wynn, 2023. "Sustainability, the Circular Economy and Digitalisation in the German Textile and Clothing Industry," Sustainability, MDPI, vol. 15(11), pages 1-30, June.
    6. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    7. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    8. Yang, Yong, 2012. "Agglomeration density and tourism development in China: An empirical research based on dynamic panel data model," Tourism Management, Elsevier, vol. 33(6), pages 1347-1359.
    9. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    10. Franco Fassio & Chiara Chirilli, 2023. "The Circular Economy and the Food System: A Review of Principal Measuring Tools," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    11. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    12. Florian Fizaine, 2021. "La croissance verte est-elle durable et compatible avec l’économie circulaire ? Une approche par l’identité IPAT," Post-Print hal-03884377, HAL.
    13. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    14. Krzysztof Borodako & Ivan Kožić, 2016. "Cooperation Patterns in the Tourism Business: The Case of Poland," Prague Economic Papers, Prague University of Economics and Business, vol. 2016(2), pages 160-174.
    15. Marina Cavalieri & Paolo Lorenzo Ferrara & Claudio Finocchiaro & Marco Ferdinando Martorana, 2024. "An Economic Analysis of the Use of Local Natural Waste: Volcanic Ash of Mt. Etna Volcano (Italy) for Geopolymer Production," Sustainability, MDPI, vol. 16(2), pages 1-14, January.
    16. Amir Latif & Martha Fani Cahyandito & Gemilang Lara Utama, 2023. "Circular Economy Concept at the Micro-Level: A Case Study of Taruna Mukti Farmer Group, Bandung Regency, West Java, Indonesia," Agriculture, MDPI, vol. 13(3), pages 1-14, February.
    17. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    18. Leonidas Milios, 2021. "Towards a Circular Economy Taxation Framework: Expectations and Challenges of Implementation," Circular Economy and Sustainability,, Springer.
    19. Marit Moe Bjørnbet & Sigurd Sagen Vildåsen, 2021. "Life Cycle Assessment to Ensure Sustainability of Circular Business Models in Manufacturing," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
    20. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2715-:d:788761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.