IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v212y2025ics1364032125000504.html
   My bibliography  Save this article

Review of mathematical programming models for energy-based industrial symbiosis networks

Author

Listed:
  • Ramir D.T. Certeza, La Verne
  • Purnama, Aloisius Rabata
  • Ahsan, Aniq
  • Low, Jonathan S.C.
  • Lu, Wen F.

Abstract

Formation of energy-based industrial symbiosis networks (EISNs) is a measure by which industries can address their high energy consumption. EISNs are often designed through mathematical programming (MP) because this method can represent the integration of numerous entities in a compact model while allowing tradeoff analysis of various EISN design objectives. In view thereof, this study presents a systematic review of MP models for EISN optimization. It addresses the research gap on the lack of studies which review the use of MP for optimizing EISNs involving waste heat as the shared resource. The models were analyzed based on five features: the typology of objective functions, the integrated entities in the EISN, the waste heat use options, the effects of considering distance between entities, and the method for modelling parameter uncertainty. This study has uncovered several gaps in EISN modelling. First, there is no consensus about the most relevant environmental and social impacts to include in EISN optimization. Second, novel approaches to simplify nonconvex models are scarce, thereby hindering the incorporation of more pertinent entities into the models due to the concomitant increase in solution time. Third, models analyzing the tradeoff among the various waste heat utilization pathways are limited. Fourth, most models do not include the implications of considering the physical layout of integrated entities in optimizing EISN design. Finally, the best method to incorporate parameter uncertainty in models is still unsettled. By addressing these gaps, more comprehensive MP models can be developed, thereby supporting better-informed decisions about EISN establishment.

Suggested Citation

  • Ramir D.T. Certeza, La Verne & Purnama, Aloisius Rabata & Ahsan, Aniq & Low, Jonathan S.C. & Lu, Wen F., 2025. "Review of mathematical programming models for energy-based industrial symbiosis networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000504
    DOI: 10.1016/j.rser.2025.115377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Huijuan Dong & Zuoxi Liu & Yong Geng & Tsuyoshi Fujita & Minoru Fujii & Lu Sun & Liming Zhang, 2018. "Evaluating Environmental Performance of Industrial Park Development: The Case of Shenyang," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1402-1412, December.
    2. Chang Yu & Gerard P.J. Dijkema & Martin Jong, 2015. "What Makes Eco-Transformation of Industrial Parks Take Off in China?," Journal of Industrial Ecology, Yale University, vol. 19(3), pages 441-456, June.
    3. Lynda Aissani & Antoine Lacassagne & Jean‐Baptiste Bahers & Samuel Le Féon, 2019. "Life cycle assessment of industrial symbiosis: A critical review of relevant reference scenarios," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 972-985, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Hedlund & Olof Björkqvist & Anders Nilsson & Per Engstrand, 2022. "Energy Optimization in a Paper Mill Enabled by a Three-Site Energy Cooperation," Energies, MDPI, vol. 15(8), pages 1-12, April.
    2. Yuxi Dai & Steven Day & Donato Masi & Ismail Gölgeci, 2022. "A synthesised framework of eco‐industrial park transformation and stakeholder interaction," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3122-3151, November.
    3. Xuesong Xu & Yun Su & Hongyan Shao & Songqiang Huang & Gengchen Liu, 2023. "Evaluation of symbiotic of waste resources ecosystem: a case study of Hunan Miluo Recycling Economy Industrial Park in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1131-1150, February.
    4. Jarmo Uusikartano & Hannele Väyrynen & Leena Aarikka-Stenroos, 2020. "Public Agency in Changing Industrial Circular Economy Ecosystems: Roles, Modes and Structures," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    5. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    6. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    7. Michael Martin, 2020. "Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 626-638, June.
    8. Donato Masi & Steven Day & Janet Godsell, 2017. "Supply Chain Configurations in the Circular Economy: A Systematic Literature Review," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    9. Lovisa Harfeldt-Berg & Sarah Broberg & Karin Ericsson, 2022. "The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    10. Zuoxi Liu & Yongyang Wang & Shanshan Wang & Huijuan Dong & Yong Geng & Bing Xue & Jiaming Gu & Run Dong Li & Tianhua Yang, 2018. "An Emergy and Decomposition Assessment of China’s Crop Production: Sustainability and Driving Forces," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    11. Jinpeng Fu & Guirong Xiao & Lingling Guo & Chunyou Wu, 2018. "Measuring the Dynamic Efficiency of Regional Industrial Green Transformation in China," Sustainability, MDPI, vol. 10(3), pages 1-19, February.
    12. Li Song & Xiaoliang Zhou, 2021. "Does the Green Industry Policy Reduce Industrial Pollution Emissions?—Evidence from China’s National Eco-Industrial Park," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    13. Hafiz Haq & Petri Välisuo & Seppo Niemi, 2021. "Modelling Sustainable Industrial Symbiosis," Energies, MDPI, vol. 14(4), pages 1-16, February.
    14. Li Sun & Wouter Spekkink & Eefje Cuppen & Gijsbert Korevaar, 2017. "Coordination of Industrial Symbiosis through Anchoring," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    15. Feng Han & Zhangcong Feng & Chao Wang & Nujie Yang & Dong Yang & Feng Shi, 2021. "Interweaving Industrial Ecology and Ecological Modernization: A Comparative Bibliometric Analysis," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    16. Fan, Yupeng & Qiao, Qi & Xian, Chaofan & Xiao, Yang & Fang, Lin, 2017. "A modified ecological footprint method to evaluate environmental impacts of industrial parks," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 293-299.
    17. Shiva Noori & Gijsbert Korevaar & Rob Stikkelman & Andrea Ramírez, 2023. "Exploring the emergence of waste recovery and exchange in industrial clusters," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 937-950, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.